Generation and Reactions of Pyridyllithiums via Br/Li Exchange Reactions Using Continuous Flow Microreactor Systems
Aiichiro Nagaki A , Daisuke Yamada A , Shigeyuki Yamada A , Masatomo Doi A , Daisuke Ichinari A , Yutaka Tomida A , Naofumi Takabayashi A and Jun-ichi Yoshida A BA Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
B Corresponding author. Email: yoshida@sbchem.kyoto-u.ac.jp
Australian Journal of Chemistry 66(2) 199-207 https://doi.org/10.1071/CH12440
Submitted: 25 September 2012 Accepted: 28 November 2012 Published: 9 January 2013
Abstract
A continuous flow microreactor method for generating and carrying out reactions on pyridyllithiums has been developed based on Br/Li exchange reactions of bromopyridines and dibromopyridines. The reactions can be carried out without using cryogenic conditions by virtue of short residence times and efficient heat transfer, while very low temperatures such as –78 or –110°C are required for conventional batch macro methods. Moreover, sequential introduction of two different electrophiles has been successfully achieved using dibromopyridines in an integrated flow microreactor system composed of four micromixers and four microtube reactors.
References
[1] R. Chinchilla, C. Nájera, M. Yus, Chem. Rev. 2004, 104, 2667. and references cited therein| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsrY%3D&md5=175e16b37d630a2893f2e6da0bdfe0d5CAS |
[2] (a) P. Knochel, Handbook of Functionalized Organometallics 2005 (Wiley-VCH: Weinheim).
(b) A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, Angew. Chem. Int. Ed. 2000, 39, 4414.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. Clayden, Organolithiums: Selectivity for Synthesis 2002 (Pergamon: Amsterdam).
[4] (a) G. Quéguiner, F. Marsais, V. Snieckus, J. Epsztajn, Adv. Heterocycl. Chem. 1991, 52, 187.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Godard, F. Marsais, N. Plé, F. Trécourt, A. Turck, G. Quéguiner, Heterocycles 1995, 40, 1055.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Trécourt, B. Gervais, M. Mallet, G. Quéguiner, J. Org. Chem. 1996, 61, 1673.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Trécourt, B. Gervais, O. Mongin, C. Le Gal, F. Mongin, G. Quéguiner, J. Org. Chem. 1998, 63, 2892.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Pasquinet, P. Rocca, F. Marsais, A. Godard, G. Quéguiner, Tetrahedron 1998, 54, 8771.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. C. Gros, Y. Fort, Eur. J. Org. Chem. 2009, 4199.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) H. Gilman, S. M. Spatz, J. Org. Chem. 1951, 16, 1485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XjsF2itw%3D%3D&md5=c168045f05151d7c45964cba1622b61bCAS |
(b) H. Gilman, W. A. Gregory, S. M. Spatz, J. Org. Chem. 1951, 16, 1788.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Wibaut, L. G. Heeringa, Recl. Trav. Chim. Pays Bas 1955, 74, 1003.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. E. Parham, R. M. Piccirilli, J. Org. Chem. 1977, 42, 257.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. R. Newkome, J. M. Roper, J. Organomet. Chem. 1980, 186, 147.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Mallet, G. Quéguiner, Tetrahedron 1986, 42, 2253.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Mallet, G. Branger, F. Marsais, G. Quéguiner, J. Organomet. Chem. 1990, 382, 319.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. Cai, D. L. Hughes, T. R. Verhoeven, Tetrahedron Lett. 1996, 37, 2537.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. H. Furneaux, G. Limberg, P. C. Tyler, V. L. Schramm, Tetrahedron 1997, 53, 2915.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. A. Peterson, J. R. Mitchell, J. Org. Chem. 1997, 62, 8237.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Books on microreactor synthesis: W. Ehrfeld, V. Hessel, H. Löwe, Microreactors 2000 (Wiley-VCH: Weinheim).
(b) V. Hessel, S. Hardt, H. Löwe, Chemical Micro Process Engineering 2004 (Wiley-VCH Verlag: Weinheim).
(c) J. Yoshida, Flash Chemistry: Fast Organic Synthesis in Microsystems 2008 (Wiley-Blackwell: Chichester).
(d) V. Hessel, A. Renken, J. C. Schouten, J. Yoshida, Micro Process Engineering 2009 (Wiley-Blackwell: Weinheim).
[7] (a) Reviews on microreactor synthesis: K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem. Int. Ed. 2004, 43, 406.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. N. Doku, W. Verboom, D. N. Reinhoudt, A. van den Berg, Tetrahedron 2005, 61, 2733.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Yoshida, A. Nagaki, T. Iwasaki, S. Suga, Chem. Eng. Tech. 2005, 28, 259.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Watts, S. J. Haswell, Chem. Soc. Rev. 2005, 34, 235.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. Geyer, J. D. C. Codee, P. H. Seeberger, Chem. – Eur. J. 2006, 12, 8434.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. J. deMello, Nature 2006, 442, 394.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Song, D. L. Chen, R. F. Ismagilov, Angew. Chem. Int. Ed. 2006, 45, 7336.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. Kobayashi, Y. Mori, S. Kobayashi, Chem. – Asian. J. 2006, 1, 22.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Brivio, W. Verboom, D. N. Reinhoudt, Lab Chip. 2006, 6, 329.
| Crossref | GoogleScholarGoogle Scholar |
(j) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300.
| Crossref | GoogleScholarGoogle Scholar |
(k) B. Ahmed-Omer, J. C. Brandtand, T. Wirth, Org. Biomol. Chem. 2007, 5, 733.
| Crossref | GoogleScholarGoogle Scholar |
(l) P. Watts, C. Wiles, Chem. Commun. 2007, 443.
| Crossref | GoogleScholarGoogle Scholar |
(m) T. Fukuyama, M. T. Rahman, M. Sato, I. Ryu, Synlett 2008, 151.
(n) J. Yoshida, A. Nagaki, T. Yamada, Chem. – Eur. J. 2008, 14, 7450.
| Crossref | GoogleScholarGoogle Scholar |
(o) R. L. Hartman, K. F. Jensen, Lab Chip. 2009, 9, 2495.
| Crossref | GoogleScholarGoogle Scholar |
(p) W. Lin, Y. Wang, S. Wang, H. Tseng, Nano Today 2009, 4, 470.
| Crossref | GoogleScholarGoogle Scholar |
(q) K. Geyer, T. Gustafsson, P. H. Seeberger, Synlett 2009, 2382.
(r) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19.
| Crossref | GoogleScholarGoogle Scholar |
(s) S. Marre, K. F. Jensen, Chem. Soc. Rev. 2010, 39, 1183.
| Crossref | GoogleScholarGoogle Scholar |
(t) D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675.
| Crossref | GoogleScholarGoogle Scholar |
(u) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19.
| Crossref | GoogleScholarGoogle Scholar |
(v) J. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Some recent examples: A. Nagaki, K. Kawamura, S. Suga, T. Ando, M. Sawamoto, J. Yoshida, J. Am. Chem. Soc. 2004, 126, 14702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Wjs70%3D&md5=e5a3be5a98936b4dd69cb65e48980ef6CAS |
(b) A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae, J. Yoshida, J. Am. Chem. Soc. 2005, 127, 11666.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. He, P. Watts, F. Marken, S. J. Haswell, Angew. Chem. Int. Ed. 2006, 45, 4146.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Tanaka, S. Motomatsu, K. Koyama, S. Tanaka, K. Fukase, Org. Lett. 2007, 9, 299.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem. Int. Ed. 2007, 46, 5704.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. H. Hornung, M. R. Mackley, I. R. Baxendale, S. V. Ley, Org. Process Res. Dev. 2007, 11, 399.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Fukuyama, M. Kobayashi, M. T. Rahman, N. Kamata, I. Ryu, Org. Lett. 2008, 10, 533.
| Crossref | GoogleScholarGoogle Scholar |
(h) C. Wiles, P. Watts, Org. Process Res. Dev. 2008, 12, 1001.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. Nagaki, E. Takizawa, J. Yoshida, J. Am. Chem. Soc. 2009, 131, 1654.
| Crossref | GoogleScholarGoogle Scholar |
(j) A. Nagaki, E. Takizawa, J. Yoshida, Chem. Lett. 2009, 38, 486.
| Crossref | GoogleScholarGoogle Scholar |
(k) I. C. Wienhofer, A. Studer, M. T. Rahman, T. Fukuyama, I. Ryu, Org. Lett. 2009, 11, 2457.
| Crossref | GoogleScholarGoogle Scholar |
(l) A. R. Bogdan, S. L. Poe, D. C. Kubis, S. J. Broadwater, D. T. McQuade, Angew. Chem. Int. Ed. 2009, 48, 8547.
| Crossref | GoogleScholarGoogle Scholar |
(m) T. Tricotet, D. F. O’Shea, Chem. – Eur. J. 2010, 16, 6678.
(n) D. L. Browne, M. Baumann, B. H. Harji, I. R. Baxendale, S. V. Ley, Org. Lett. 2011, 13, 3312.
| Crossref | GoogleScholarGoogle Scholar |
(o) C. F. Carter, H. Lange, D. Sakai, I. R. Baxendale, S. V. Ley, Chem. – Eur. J. 2011, 17, 3398.
| Crossref | GoogleScholarGoogle Scholar |
(p) N. Zaborenko, M. W. Bedore, T. F. Jamison, K. F. Jensen, Org. Process Res. Dev. 2011, 15, 131.
| Crossref | GoogleScholarGoogle Scholar |
(q) T. Noél, S. Kuhn, A. J. Musachio, K. F. Jensen, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 5943.
| Crossref | GoogleScholarGoogle Scholar |
(r) A. C. Gutierrez, T. F. Jamison, Org. Lett. 2011, 13, 6414.
| Crossref | GoogleScholarGoogle Scholar |
(s) W. Shu, L. Pellegatti, M. A. Oberli, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 10665.
| Crossref | GoogleScholarGoogle Scholar |
(t) W. Shu, S. L. Buchwald, Angew. Chem. Int. Ed. 2012, 51, 5355.
| Crossref | GoogleScholarGoogle Scholar |
(u) A. Nagaki, Y. Moriwaki, J. Yoshida, Chem. Commun. 2012, 48, 11211.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Some recent examples that higher temperatures are possible in flow systems: T. Schwalbe, V. Autze, M. Hohmann, W. Stirner, Org. Process Res. Dev. 2004, 8, 440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFGgu7k%3D&md5=14ebbd80c80f2fc35b4ce3c9431cf73dCAS |
(b) X. Zhang, S. Stefanick, F. J. Villani, Org. Process Res. Dev. 2004, 8, 455.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Pennemann, V. Hessel, H. Löwe, Chem. Eng. Sci. 2004, 59, 4789.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 578.
(e) T. Kawaguchi, H. Miyata, K. Ataka, K. Mae, J. Yoshida, Angew. Chem. Int. Ed. 2005, 44, 2413.
| Crossref | GoogleScholarGoogle Scholar |
(f) O. Flogel, J. D. C. Codee, D. Seebach, P. H. Seeberger, Angew. Chem., Int. Ed. 2006, 45, 7000.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. R. Carrel, K. Geyer, D. C. Jeroen, J. D. C. Codee, P. H. Seeberger, Org. Lett. 2007, 9, 2285.
| Crossref | GoogleScholarGoogle Scholar |
(h) Y. Ushiogi, T. Hase, Y. Iinuma, A. Takata, J. Yoshida, Chem. Commun. 2007, 2947.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. Nagaki, Y. Tomida, J. Yoshida, Macromolecules 2008, 41, 6322.
(j) A. Nagaki, Y. Tomida, A. Miyazaki, J. Yoshida, Macromolecules 2009, 42, 4384.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) J. Yoshida, Chem. Commun. 2005, 4509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvV2qtbw%3D&md5=c8e69caa10af8534f9c83f375b189e42CAS |
(b) J. Yoshida, A. Nagaki, T. Yamada, Chem. – Eur. J. 2008, 14, 7450.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Yoshida, Chem. Rec. 2010, 10, 332.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Nagaki, N. Takabayashi, Y. Moriwaki, J. Yoshida, Chem. – Eur. J. 2012, 18, 11871.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) H. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 2007, 129, 3046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVyiuro%3D&md5=a6c61e5f0b095dd559d74daaead4dd64CAS |
(b) A. Nagaki, Y. Tomida, H. Usutani, H. Kim, N. Takabayashi, T. Nokami, H. Okamoto, J. Yoshida, Chem. – Asian J. 2007, 2, 1513.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Nagaki, N. Takabayashi, Y. Tomida, J. Yoshida, Org. Lett. 2008, 10, 3937.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Nagaki, N. Takabayashi, Y. Tomida, J. Yoshida, Beilstein J. Org. Chem. 2009, 5, 1.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Tomida, A. Nagaki, J. Yoshida, Org. Lett. 2009, 11, 3614.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki, J. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 3245.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) A. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2008, 47, 7833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OhsrnJ&md5=177476e8e83f7c800ac43b50a222cc66CAS |
(b) A. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2009, 48, 8063.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Nagaki, H. Kim, Y. Moriwaki, C. Matsuo, J. Yoshida, Chem. – Eur. J. 2010, 16, 11167.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Nagaki, H. Kim, C. Matuo, J. Yoshida, Org. Biomol. Chem. 2010, 8, 1212.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Kim, A. Nagaki, J. Yoshida, Nature Commun. 2011, 2, 264.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) A. Nagaki, E. Takizawa, J. Yoshida, J. Am. Chem. Soc. 2009, 131, 1654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlOiug%3D%3D&md5=1dce7c7ef96077a8e490e17008753be6CAS |
(b) A. Nagaki, E. Takizawa, J. Yoshida, Chem. – Eur. J. 2010, 16, 14149.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Nagaki, E. Takizawa, J. Yoshida, Chem. Lett. 2009, 38, 1060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVChsbvJ&md5=ef3091461388719784c077739e14c7afCAS |
[15] A. Nagaki, S. Tokuoka, S. Yamada, Y. Tomida, K. Oshiro, H. Amii, J. Yoshida, Org. Biomol. Chem. 2011, 9, 7559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSgsrvF&md5=bb981dc52b2fdf0925e6993543ec975cCAS |
[16] Y. Tomida, A. Nagaki, J. Yoshida, J. Am. Chem. Soc. 2011, 133, 3744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWlsLw%3D&md5=0f9ee9649b164643f4858faedc433a96CAS |
[17] (a) Br/Li exchange reaction of bromopyridines with ketones under in-situ-quench conditions in microreactor: S. Goto, J. Velder, S. E. Sheikh, Y. Sakamoto, M. Mitani, S. Elmas, A. Adler, A. Becker, J.-M. Neudörfl, J. Lex, H.-G. Schmalz, Synlett 2008, 9, 1361.
(b) LiCl-mediated Br/Mg exchange reaction of bromopyridines in flow: T. Brodmann, P. Koos, A. Metzger, P. Knochel, S. V. Ley, Org. Process Res. Dev. 2012, 16, 1102.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. Nagaki, S. Yamada, M. Doi, Y. Tomida, N. Takabayashi, J. Yoshida, Green Chem. 2011, 13, 1110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsF2ns7w%3D&md5=4866818f53a15a9006bfc7ad8eb1303bCAS |
[19] (a) Integration of a sequence of reactions in flow by adding reaction components at different places: S. Suga, D. Yamada, J. Yoshida, Chem. Lett. 2010, 39, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWmu70%3D&md5=acb4769eb310984bf5dab1bca77d039eCAS |
(b) A. Nagaki, A. Kenmoku, Y. Moriwaki, A. Hayashi, J. Yoshida, Angew. Chem. Int. Ed. 2010, 49, 7543.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Yoshida, K. Saito, T. Nokami, A. Nagaki, Synlett 2011, 2011, 1189.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) For an example on the lithiation of 2,3-dibromopyridine: M. Mallet, G. Quéguiner, Tetrahedron 1979, 35,
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvFyhsLw%3D&md5=a9e087db7e70178944fddc9b6fa17e40CAS |
(b) M. Mallet, G. Quéguiner, Tetrahedron 1985, 41, 3433.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. J. Quallich, D. E. Fox, R. C. Friedmann, C. W. Murtiashaw, J. Org. Chem. 1992, 57, 761.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) For an example on the lithiation of 2,5-dibromopyridine: W. E. Parham, R. M. Piccirilli, J. Org. Chem. 1977, 42, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXnt1eksA%3D%3D&md5=39451f42939608574c4959b7e77dbfcbCAS |
(b) X. Wang, P. Rabbat, P. O’Shea, R. Tillyer, E. J. J. Grabowski, P. J. Reider, Tetrahedron Lett. 2000, 41, 4335.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. C. Gros, A. Doudouh, C. Woltermann, Chem. Commun. 2006, 2673.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Doudouh, C. Woltermann, P. C. Gros, J. Org. Chem. 2007, 72, 4978.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) For an example on the lithiation of 2,6-dibromopyridine: E. De Vos, E. L. Esmans, F. C. Alderweireldt, J. Heterocycl. Chem. 1993, 30, 1245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislWjtro%3D&md5=c2ee88381623032eece459ea4e5e0e4cCAS |
(b) Y. Uchida, N. Echikawa, S. Oae, Heteroat. Chem. 1994, 5, 409.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Cai, D. L. Hughes, T. R. Verhoeven, Tetrahedron Lett. 1996, 37, 2537.
| Crossref | GoogleScholarGoogle Scholar |