Development and Evaluation of a Raman Flow Cell for Monitoring Continuous Flow Reactions
Grant Chaplain A , Stephen J. Haswell A C , Paul D. I. Fletcher A , Stephen M. Kelly A and Andrew Mansfield BA Department of Chemistry, University of Hull, Hull, HU6 7RX, UK.
B Flow Chemistry Solutions, Room F 238, Building 130, Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK.
C Corresponding author. Email: s.j.haswell@hull.ac.uk
Australian Journal of Chemistry 66(2) 208-212 https://doi.org/10.1071/CH12379
Submitted: 15 August 2012 Accepted: 4 December 2012 Published: 11 January 2013
Abstract
We show how in-line Raman spectroscopy can be used to monitor both reactant and product concentrations for a heterogeneously catalysed Suzuki cross reaction operating in continuous flow. The flow system consisted of an HPLC pump to drive a homogeneous mixture of the reactants (4-bromobenzonitrile, phenylboronic acid, and potassium carbonate) through an oven heated (80°C) palladium catalyst immobilised on a silica monolith. A custom built PTFE in-line flow cell with a quartz window enabled the coupling of an Ocean Optics Raman spectrometer probe to monitor both the reactants and product (4-cyanobiphenyl). Calibration was based on obtaining multivariate spectral data in the range 1530 cm–1 and 1640 cm–1 and using partial least-squares regression (PLSR) to obtain a calibration model which was validated using gas chromatography–mass spectrometry (GCMS) analysis. In-line Raman monitoring of the reactant and product concentrations enable (i) determination of reaction kinetic information such as the empirical rate law and associated rate constant and (ii) optimisation of either the product conversion (61 % at 0.02 mL min–1 generating 17 g h–1) or product yield (14 % at 0.24 mL min–1 generating 53 g h–1).
References
[1] B. Ahmed-Omer, J. C. Brandt, T. Wirth, Org. Biomol. Chem. 2007, 5, 733.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSlsr8%3D&md5=9337fa01afce17366974a584e37f26d3CAS |
[2] T. Noel, J. R. Naber, R. L. Hartman, J. P. McMullen, K. F. Jensen, S. L. Buchwald, Chem. Sci. 2011, 2, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOjtA%3D%3D&md5=f5eed17b56c6d03a4a03aba4828a3b71CAS |
[3] A. Sniady, M. W. Bedore, T. F. Jamison, Angew. Chem. 2011, 123, 2203.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. Moorthy, C. Khoury, J. S. Moore, D. J. Beebe, Sens. Actuators B Chem. 2001, 75, 223.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, S. J. Haswell, Lab Chip 2010, 10, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVWitbc%3D&md5=d11e0ca9bc59388aec7751c612a3ddc8CAS |
[6] D. Cantillo, H. Sheibani, C. O. Kappe, J. Org. Chem. 2012, 77, 2463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVeqs7k%3D&md5=d9351c4b40565223a830ce5879ba3eb0CAS |
[7] Y. Matsushita, N. Ohba, T. Suzuki, T. Ichimura, Catal. Today 2008, 132, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVensbk%3D&md5=906e5bb1b7ab2d278709e5e821bca694CAS |
[8] P. He, P. Watts, F. Marken, S. J. Haswell, Green Chem. 2007, 9, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVegtw%3D%3D&md5=3d2df12920b111f057777a957393ce78CAS |
[9] Y. Kikutani, T. Kitamori, Macromol. Rapid Commun. 2004, 25, 158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptl2ksQ%3D%3D&md5=281ef4e932c800af26c3d353848c349aCAS |
[10] S. Liu, T. Fukuyama, M. Sato, I. Ryu, Org. Process Res. Dev. 2004, 8, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Cit7w%3D&md5=15179012fa9a9c3571d5f41c5fa1b115CAS |
[11] P. He, S. J. Haswell, P. D. I. Fletcher, Appl. Catal. A Gen. 2004, 274, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlSjsr0%3D&md5=ee232ba3123da0e1be40286669da0421CAS |
[12] M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 2002, 35, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslehsLo%3D&md5=6a9b91377908f89921232432cf0fc32fCAS |
[13] N. T. S. Phan, J. Khan, P. Styring, Tetrahedron 2005, 61, 12065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GitrnP&md5=1b60bcf7a9c4ff6a1066a5d07e7ae033CAS |
[14] P. He, S. J. Haswell, P. D. I. Fletcher, S. M. Kelly, A. Mansfield, Beilstein J. Org. Chem. 2011, 7, 1150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2ns7zI&md5=350198bab221adedb9f9410c9d7d0b33CAS |
[15] A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 2005, 34, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrtg%3D%3D&md5=6d857c4b646241399f189149f731c2fcCAS |
[16] M. N. Slyadnev, Y. Tanaka, M. Tokeshi, T. Kitamori, Anal. Chem. 2001, 73, 4037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWrsbY%3D&md5=c87ab14f9319932250b21b75cd3b95d7CAS |
[17] C. D. Smith, I. R. Baxendale, S. Lanners, J. J. Hayward, S. C. Smith, S. V. Ley, Org. Biomol. Chem. 2007, 5, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2jtLc%3D&md5=dbb11d5477c3186c84777bdc8ea59a9aCAS |
[18] J. Stripeikis, P. Costa, M. Tudino, O. Troccoli, Anal. Chim. Acta 2000, 408, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVWrsLo%3D&md5=d5b2b101a7be3c4541886e189a1a334bCAS |
[19] G. Shore, S. Morin, M. G. Organ, Angew. Chem. 2006, 118, 2827.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. W. Schoppelrei, M. L. Kieke, X. Wang, M. T. Klein, T. B. Brill, J. Phys. Chem. 1996, 100, 14343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1CmtLc%3D&md5=dd9502defeecf2140b4f49acb2672b8cCAS |
[21] J. A. Banister, P. D. Lee, M. Poliakoff, Organometallics 1995, 14, 3876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvF2ht78%3D&md5=2170d72829535c15b07d286fc376b3cfCAS |
[22] D. Ferri, A. Baiker, Top. Catal. 2009, 52, 1323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGmtr0%3D&md5=487368c866620d8a5697e34471521595CAS |
[23] A. Ruiz-Medina, E. J. Llorent-Martínez, J. Pharm. Biomed. Anal. 2010, 53, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSrtr4%3D&md5=46cfa2d57798c2d64e981eff5376b817CAS |
[24] S. Xu, W. Zhang, X. Liu, X. Han, X. Bao, J. Am. Chem. Soc. 2009, 131, 13722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqtLnM&md5=190f2bb974af310ff134dd62d9c39435CAS |
[25] P. D. I. Fletcher, S. J. Haswell, X. Zhang, Electrophoresis 2003, 24, 3239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotF2ht7c%3D&md5=1270234025c37df722f1562e4943bd02CAS |
[26] C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp, J. G. Goode, N. L. Gaunt, Org. Process Res. Dev. 2010, 14, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgsrk%3D&md5=ed5fa572dc66e0c8042b6e5e004ce275CAS |
[27] S. Farquharson, W. Smith, R. M. Carangelo, C. Brouillete, Proc. SPIE 1999, 3859, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1ekur8%3D&md5=b05d3d93a7f6e03f02e8f758051dd0f4CAS |
[28] S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts, P. Dallin, J. M. Girkin, J. Am. Chem. Soc. 2011, 133, 3601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlams7o%3D&md5=ca19a7987e710463775f3b2c1fc7cb9eCAS |
[29] R. J. Ampiah-Bonney, A. D. Walmsley, Analyst (Lond.) 1999, 124, 1817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsF2ms78%3D&md5=d4b86c95b7c918084eef2df62a52ae80CAS |
[30] A. Fiedler, M. Baranska, H. Schulz, J. Raman Spectrosc. 2011, 42, 551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGjtrs%3D&md5=40e5965a104237318aa1bc2a4ed12785CAS |
[31] K. J. Laidler, J. H. Meiser, B. C. Sanctuary, Physical Chemistry 2003, 4th edn (Houghton Mifflin: Boston, MA).