A Simple and Sensitive Colorimetric Detection of Silver Ions Based on Cationic Polymer-Directed AuNPs Aggregation
Faze Wang A , Yuangen Wu A , Shenshan Zhan A , Lan He A , Wenting Zhi A , Xiaoxuan Zhou A and Pei Zhou A BA School of Agriculture and Biology, and Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, and School of Environmental Science and Engineering, and Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
B Corresponding author. Email: zhoupei@sjtu.edu.cn
Australian Journal of Chemistry 66(1) 113-118 https://doi.org/10.1071/CH12375
Submitted: 10 August 2012 Accepted: 24 September 2012 Published: 15 October 2012
Abstract
This paper describes a simple and sensitive colorimetric sensor employing single-stranded DNA (ssDNA) ligand, cationic polymer, and gold nanoparticles (AuNPs) to detect silver ions. The positively charged polymer can electrostatically interact with ssDNA and destroy the charge balance leading to induction of AuNP aggregation. Silver ions (Ag+) can bind to cytosine (C)-rich nucleic acids to form the C-Ag+-C hair-pin structure, which can prevent its interaction with polymers. The resulting cationic polymer could aggregate AuNPs causing a remarkable change in colour. The concentration of Ag+ can be determined visually. This sensing platform exhibits high sensitivity and selectivity towards Ag+ versus other metal ions, with a detection limit of 48.6 nM. The assay did not require any labelling or modifying steps. This method is simple, effective, and convenient and can in principle be used to detect other metal ions or small molecules.
References
[1] T. W. Purcell, J. J. Peters, Environ. Toxicol. Chem. 1998, 17, 539.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVOjtr4%3D&md5=2a82a260df1e77eff75c35df1de0ef79CAS |
[2] K. H. O. Pelkonen, H. Heinonen-Tanski, O. O. P. Hänninen, Toxicology 2003, 186, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVagtrY%3D&md5=505fa06bb95d3f18660bb5cdb65b0532CAS |
[3] A. Mohadesi, M. A. Taher, Talanta 2007, 71, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFSktQ%3D%3D&md5=4b89336cf5b0bf1286f6bdef86a4f163CAS |
[4] V. Chegel, A. Lopatynskyi, S. Ishihara, J. P. Hill, K. Ariga, Aust. J. Chem. 2012, 65, 1223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksbzL&md5=85d89b0210f2437ffe0aabdef1316424CAS |
[5] R. P. Singh, E. R. Pambid, Analyst 1990, 115, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVGiurg%3D&md5=461efd8ffda34808b184db93e245c726CAS |
[6] A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Commun. 2008, 4825,
| Crossref | GoogleScholarGoogle Scholar |
[7] K. Han, Z. Liang, N. Zhou, Sensors 2010, 10, 4541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Ors74%3D&md5=6a4f501a9efbd76767178d10f64b3bcfCAS |
[8] J.-S. Lee, M. S. Han, C. A. Mirkin, Angew. Chem. 2007, 119, 4171.
| Crossref | GoogleScholarGoogle Scholar |
[9] X.-B. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Anal. Chem. 2010, 82, 5005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt12nu7g%3D&md5=1c0de0f6995b19c1410266f66a4ce6b8CAS |
[10] Y.-H. Lin, W.-L. Tseng, Chem. Commun. 2009, 6619,
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Li, L. Shi, E. Wang, S. Dong, Chem. – Eur. J. 2009, 15, 3347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1yrsb4%3D&md5=8cee7e9622e1f9a853c1f6557658698eCAS |
[12] C.-C. Huang, Y.-F. Huang, Z. Cao, W. Tan, H.-T. Chang, Anal. Chem. 2005, 77, 5735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVOksbw%3D&md5=1a6ed99901b1bb464126bb78e12d8be7CAS |
[13] H. Li, L. J. Rothberg, Anal. Chem. 2004, 76, 5414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Cgs7c%3D&md5=29947c55637fe2624725b22fb62281aaCAS |
[14] C.-W. Liu, Y.-T. Hsieh, C.-C. Huang, Z.-H. Lin, H.-T. Chang, Chem. Commun. 2008, 2242,
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi, P. Zhou, Chem. Commun. 2012, 48, 4459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Gkur4%3D&md5=5f4afeb3e04bbb6d16fb5702d02a6f22CAS |
[16] J. Liu, Y. Lu, J. Am. Chem. Soc. 2003, 125, 6642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Gnsbw%3D&md5=ba8f4dd79d498f0532fdc465b9b612bdCAS |
[17] M. S. Han, A. K. R. Lytton-Jean, B.-K. Oh, J. Heo, C. A. Mirkin, Angew. Chem. 2006, 118, 1839.
| Crossref | GoogleScholarGoogle Scholar |
[18] U. Kreibig, L. Genzel, Surf. Sci. 1985, 156, 678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkslygu7s%3D&md5=a9ca05fc306e7eba3a99c4885580f11cCAS |
[19] S. K. Ghosh, T. Pal, Chem. Rev. 2007, 107, 4797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yrt7zK&md5=dae79896a848bf1cc3241eeb1a927452CAS |
[20] V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, K. Ariga, J. Phys. Chem. C 2012, 116, 2683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLnL&md5=937913b356de5cc4c31786e206a933c6CAS |
[21] F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, K. W. Plaxco, Proc. Natl. Acad. Sci. USA 2010, 107, 10837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKqur8%3D&md5=c59021a549d5efd84d37bee21ef8640eCAS |
[22] Y. Wu, L. Liu, S. Zhan, F. Wang, P. Zhou, Analyst 2012, 137, 4171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsLjM&md5=023eb9d13d09bb03254b17472cc87814CAS |
[23] B. Liu, B. S. Gaylord, S. Wang, G. C. Bazan, J. Am. Chem. Soc. 2003, 125, 6705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Glt7g%3D&md5=2e80e1708d3880bd30a0fb05036f3973CAS |
[24] K.-Y. Pu, B. Liu, Biosens. Bioelectron. 2009, 24, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVemsQ%3D%3D&md5=c0b87fede4b319616bcc0f24163e28b2CAS |
[25] L. Polavarapu, Q.-H. Xu, Langmuir 2008, 24, 10608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVeit7fM&md5=757aee13cbb2f37c3364d28bef21782aCAS |
[26] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem. 1995, 67, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1Sitbg%3D&md5=86b37a6f9be4b0e6e7e4c7f342eb0dafCAS |
[27] H. Li, L. J. Rothberg, J. Am. Chem. Soc. 2004, 126, 10958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFCrsb8%3D&md5=ee5067da1b23e28f7100165c9487536bCAS |
[28] L. Wang, X. Liu, X. Hu, S. Song, C. Fan, Chem. Commun. 2006, 3780,
| Crossref | GoogleScholarGoogle Scholar |
[29] Y. Wu, S. Zhan, L. Xu, W. Shi, T. Xi, X. Zhan, P. Zhou, Chem. Commun. 2011, 47, 6027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyjtbk%3D&md5=5944d1790f3f4d044505ba6c921c48f0CAS |