Field Determinations of Pentachlorophenol in Water Using UV/Vis Spectroscopy
Nicholas G. Stuckey A C and Kim Larsen BA NCEA, Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Qld 4350, Australia.
B Faculty of Sciences, University of Southern Queensland, Toowoomba, Qld 4350, Australia.
C Corresponding author. Email: nicholas.stuckey@usq.edu.au
Australian Journal of Chemistry 66(1) 105-112 https://doi.org/10.1071/CH12286
Submitted: 19 April 2012 Accepted: 21 September 2012 Published: 31 October 2012
Abstract
Pentachlorophenol (PCP) is an organochloride pesticide banned in many countries due to its broad-spectrum toxicity. Current methods for monitoring PCP in environmental water require expensive laboratory equipment, limiting field monitoring. Two field methods for screening the concentration of PCP in environmental water are described herein. The first involves filtering the sample and calculating the indicative concentration from the absorbance at 320 nm. Alternatively, the sample can be acidified with concentrated hydrochloric acid to produce a fine suspension. This cloudy solution can be matched to a photo card for field estimation of concentration, or calculated more accurately from the absorbance at 450 nm. The useable ranges for these methods are 2 ppb to 100 ppm for the un-acidified method and 4 ppm to 1000 ppm for the acidified method. Results indicate that aquatic humic substances and natural turbidity present in environmental water do not compromise the results.
References
[1] L. L. Miller, L. D. Ingerman, Toxicological Profile for Pentachlorophenol 2001 (U.S. Department of Health and Human Services: Atlanta, GA).[2] Physical and Theoretical Chemistry Laboratory. Pentachlorophenol. http://www.chemexper.net/specification_d/chemicals/supplier/cas/pentachlorophenol.asp (accessed July 2011).
[3] Physical and Theoretical Chemistry Laboratory. Sodium pentachlorophenolate. http://www.chemexper.net/specification_d/chemicals/supplier/cas/Sodium%20pentachlorophenate.asp (accessed July 2011).
[4] United Nations Environmental Programme. Pentachlorophenol and its Salts and Esters 2010 (Food and Agricultural Organization of the United Nations Environmental Programme: Rome).
[5] H. Fiege, H.-M. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H-J. Buysch D. Garbe, W. Paulus, in Ullmann’s Encyclopaedia of Industrial Chemistry (Ed. F. Ullmann) 2000 (Wiley-VCH: Weinheim).
[6] International Programme on Chemical Safety. Environmental Health Criteria 71 – Pentachlorophenol 1987 (World Health Organization: Geneva).
[7] Tracor Jitco Inc. Pesticide Chemical Use Profile for Pentachlorophenol, Sodium Salt of 1996 (The United States Environmental Protection Agency: Arlington, TX).
[8] S. Draggan, Health Effects of Pentachlorophenol 2008 (Environmental Information Coalition; National Council for Science and the Environment: Washington, D. C.).
[9] J. Chi, G.-L. Huang, J. Environ. Sci. Health B 2004, 39, 65.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. M. Laine, K. S. Jørgensen, Appl. Environ. Microbiol. 1996, 62, 1507.
| 1:CAS:528:DyaK28Xislylt78%3D&md5=97be9355b9dda022db698069d20c5f2fCAS |
[11] World Health Organization. Pentachlorophenol in Drinking Water 2003 (World Health Organization Regional Office for Europe: Geneva).
[12] W. Butte, J. Denker, M. Kirsch, T. Hopner, Environ. Pollut. 1985, 9B, 29.
[13] L. L. Lamparski, R. H. Slehl, Environ. Sci. Technol. 1980, 14, 196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtFamsbg%3D&md5=5ab90057f69ac1308000a51823317e3eCAS |
[14] C. Mardones, D. von Baer, A. Hidalgo, A. Contreras, C. Sepúlveda, J. Sep. Sci. 2008, 31, 1124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKhsLg%3D&md5=736519aa7c413a39844d1434f72bce3fCAS |
[15] C. Tai, G. Jiang, Chemosphere 2005, 59, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2jsbg%3D&md5=f5f3ddfb48d5fc3283f7c2436f75a2ebCAS |
[16] A. S. Wong, D. G. Crosby, J. Agric. Food Chem. 1981, 29, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFOmtg%3D%3D&md5=3152985eac4331577f7434ac642b5b0eCAS |
[17] J. Suegara, B.-D. Lee, M. P. Espino, S. Nakai, M. Hosomi, Chemosphere 2005, 61, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegtLjN&md5=0b17f96fce3725e452b8d7825d88ef84CAS |
[18] I. K. Konstantinou, A. K. Zarkadis, A. Albanis, J. Environ. Qual. 2001, 30, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFSlsb4%3D&md5=aff6445d3acdf9cc1896984305ce4343CAS |
[19] R. S. Carr, P. Thomas, J. M. Neff, Bull. Environ. Contam. Toxicol. 1982, 28, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFWis7s%3D&md5=cc4c79ebcd2359267a7c12e4ab2ba776CAS |
[20] I. Cruz, D. E. Wells, Int. J. Environ. Anal. Chem. 1992, 48, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVals78%3D&md5=2ca2870e85dee23889c58e99cc783316CAS |
[21] USEPA. Toxics Release Inventory Data Files. http://www.epa.gov/tri/tridata/preliminarydataset/basicplus/index.html (accessed September 2012).
[22] J. T. Kirk, Aust. J. Mar. Freshwater Res. 1976, 27, 61.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fuji, K. Mopper, Environ. Sci. Technol. 2003, 37, 4702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCgtLY%3D&md5=d1af0fa769cf1f48df2bb085b7838da3CAS |
[24] N. G. Stuckey, P. A. Pittaway, K. Larsen, Photodegradation of Australian Freshwater Microlayers and the Implications for Potable Water Management 2010 (Urban Water Security Research Alliance Science Forum and Stakeholder Engagement: Building Linkages, Collaboration and Science Quality: Brisbane).
[25] S. R. Crouch, J. D. Ingle, Petrochemical Analysis 1999 (Prentice Hall Higher Education: New Jersey, NJ).
[26] M. C. Scapini, V. H. Conozonno, V. T. Balzaretti, A. F. Cirelli, Aquat. Sci. 2010, 72, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyksLjI&md5=ae7361f72661bc9b0d70955fa867025bCAS |
[27] L. E. Bennett, M. Drikas, Water Res. 1993, 27, 1209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVarurw%3D&md5=b8887cff83869407ba205b302ee06becCAS |
[28] T. Brinkmann, P. Horsch, D. Sartorius, F. H. Frimmel, Environ. Sci. Technol. 2003, 37, 4190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1eisLo%3D&md5=6b9fc7fa78a55b9c080868ddde530ca8CAS |
[29] NATA. Guidelines for the Validation and Verification of Chemical Test Methods, Technical Note No. 17, 2012 (National Association of Testing Authorities: Sydney).
[30] A. S. Standards Australia, 2850 Chemical Analysis – Interlaboratory Test Programs for Determining Precision of Analytical Method(s) 1986 (Standards Australia Publishing: Sydney).
[31] I. Ozaki, Y. Yamaguchi, T. Fujita, K. Kuroda, G. Endo, Food Chem. Toxicol. 2004, 42, 1323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKitbY%3D&md5=c024c371c5d42773f49ffe7150e06f3fCAS |
[32] M. Czaplicka, J. Hazard. Mater. 2006, 134, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvValsLc%3D&md5=2b5d62988e1647db6414ca990bb5269fCAS |