Electrodeposition of Lithium in Polystyrene Sphere Opal Structures on Copper from an Ionic Liquid
Anne Willert A , Alexandra Prowald A B , Sherif Zein El Abedin A C , Oliver Höfft A and Frank Endres A B DA Clausthal University of Technology, Chair of Interfacial Processes, D-38678 Clausthal-Zellerfeld, Germany.
B Energieforschungszentrum Goslar (EFZN), D-38640 Goslar, Am Stollen 19, 38640 Goslar, Germany.
C Electrochemistry and Corrosion Laboratory, National Research Centre, 12622-Dokki, Cairo, Egypt.
D Corresponding author. Email: frank.endres@tu-clausthal.de
Australian Journal of Chemistry 65(11) 1507-1512 https://doi.org/10.1071/CH12343
Submitted: 19 July 2012 Accepted: 10 August 2012 Published: 7 September 2012
Abstract
In this paper we report on the electrodeposition of lithium on a polystyrene sphere modified electrode from an ionic liquid. By a simple dipping process, polystyrene (PS) spheres with an average diameter of 600 nm arrange in a hexagonal close packed structure onto an electrode surface. Surprisingly, lithium does not grow uniformly from the electrode surface to the electrolyte within the voids of the PS structure. Depending on the experimental conditions a more or less good inverse opal structure made of lithium, lithium spheres or hollow lithium half-spheres can be obtained showing that the growth of lithium in the employed ionic liquid is more complicated than expected. Somehow lithium tends to push away the PS spheres during growth. Applying a slight mechanical pressure on the PS spheres during deposition improves the growth within the voids of the opal structure. Despite this complicated behaviour the PS opal structure seems to suppress a vertical dendritic growth, thus, a lithium/PS composite electrode or other lithium/polymer composite electrodes might be of some interest in rechargeable lithium metal microbatteries where a dendritic vertical growth has to be avoided.
References
[1] J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslaqu7s%3D&md5=db1048a38e68656fd59076558c2f809aCAS |
[2] Z. Chen, D. Zhang, X. Wang, X. Jia, F. Wie, H. Li, Y. Lu, Adv. Mater. 2012, 24, 2030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVyqu7Y%3D&md5=1712203401c1ad09ce863278a0fb362dCAS |
[3] S. Zein El Abedin, F. Endres, ChemPhysChem 2012, 13, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaltLnN&md5=b7356ced8c0e1aefbd1b9f65df54bc4eCAS |
[4] Z. H. Li, T. P. Zhao, X. Y. Zhan, D. S. Gao, Q. Z. Xiao, G. T. Lei, Electrochim. Acta 2010, 55, 4594.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVelu7o%3D&md5=b39c921bf09d09208d1c7be53ed6909aCAS |
[5] M. Au, S. McWhorter, H. Ajo, T. Adams, Y. Zhao, J. Gibbs, J. Power Sources 2010, 195, 3333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFersQ%3D%3D&md5=3f2faaaed620c2fa181cea368689816bCAS |
[6] C. K. Chan, H. Peng, G. Liu, K. McIlvrath, X. F. Zhang, R. A. Huggings, A. Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGh&md5=e5f86bf0cbd21dad035f059489063fdaCAS |
[7] C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2008, 8, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCrsLbN&md5=a63810a5b13aad026d569682a1d55209CAS |
[8] L. H. S. Gasparotto, A. Prowald, N. Borisenko, S. Zein El Abedin, A. Garsuch, F. Endres, J. Power Sources 2011, 196, 2879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrtLfN&md5=bd6c13e7d29092743afce9eef21feb5bCAS |
[9] A. Prowald, S. Zein El Abedin, N. Borisenko, F. Endres, Z. Phys. Chem. 2012, 226, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsV2mtLY%3D&md5=e52ac607304417718265f345fc601646CAS |
[10] C. A. Vincent, B. Scrosati, Modern Batteries 1997, 2nd edn (Elsevier: Amsterdam).
[11] A. D. Pelton, Bulletin of Alloy Phase Diagrams 1986, 7, 142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs1ehsbY%3D&md5=e64290954bf632b72ac12dd13d030adfCAS |
[12] C. Huang, D. A. MacLaren, R. T. Bacon, W. Allison, J. Phys. Condens. Matter 2011, 23, 355001.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. H. S. Gasparotto, N. Borisenko, N. Bocchi, S. Zein El Abedin, F. Endres, Phys. Chem. Chem. Phys. 2009, 11, 11140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtLfL&md5=7918ca1e9b45ee04d5a7954c8b06d6c6CAS |
[14] N. Byrne, P. C. Howlett, D. R. MacFarlane, M. E. Smith, A. Howes, A. F. Hollenkamp, T. Bastow, P. Hale, M. Forsyth, J. Power Sources 2008, 184, 288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1elt7o%3D&md5=c4ac38d9a807cc107c34f816ed31a259CAS |
[15] J.-W. Park, K. Yoshida, N. Tachikawa, K. Dokko, M. Watanabe, J. Power Sources 2011, 196, 2264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOntr%2FM&md5=713595c126c01a0fdb37230f48b72233CAS |
[16] A. Vesel, Surf. Coat. Tech. 2010, 205, 490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjsbrF&md5=03f5a04e533b439f33be4c53278f2840CAS |