Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Role of Cation in Enhancing the Conversion of the Alzheimer’s Peptide into Amyloid Fibrils Using Protic Ionic Liquids

Natalie Debeljuh B , Swapna Varghese A , Colin J. Barrow B and Nolene Byrne A C
+ Author Affiliations
- Author Affiliations

A Institute for Frontier Materials, Deakin University, Geelong, Vic. 3217, Australia.

B School of Life and Environmental Sciences, Deakin University, Geelong, Vic. 3217, Australia.

C Corresponding author. Email: nolene.byrne@deakin.edu.au

Australian Journal of Chemistry 65(11) 1502-1506 https://doi.org/10.1071/CH12316
Submitted: 5 July 2012  Accepted: 10 August 2012   Published: 2 October 2012

Abstract

We report on the impact of changes in the protic ionic liquid (pIL) cation on the fibrilisation kinetics and the conversion of the Aβ 16–22 from monomers to amyloid fibrils. When we compare the use of primary, secondary, and tertiary amines we find that the primary amine results in the greatest conversion into amyloid fibrils. We show that the pIL is directly interacting with the peptide and this likely drives the difference in conversion and kinetics observed.


References

[1]  C. M. Dobson, Trends Biochem. Sci. 1999, 24, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1ygtLg%3D&md5=16012f85376879965cbed3e29e28369eCAS |

[2]  J. Hardy, D. J. Selkoe, Science 2002, 297, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Cju7s%3D&md5=45caba6008b188bfd12243ad33ea0a17CAS |

[3]  C. M. Dobson, Science 2004, 304, 1259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFWku78%3D&md5=f70e5ed2400ddf9af80d29fc741cf4e9CAS |

[4]  C. M. Dobson, Nature 2003, 426, 884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVGmtbk%3D&md5=69e284e531195794334df4d60b08ae9eCAS |

[5]  M. Fändrich, M. A. Fletcher, C. M. Dobson, Nature 2001, 410, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. E. Golde, L. S. Schneider, E. H. Koo, Neuron 2011, 69, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWmsLg%3D&md5=6d03c793c7c1212158c4c196d0cf5488CAS |

[7]  M. T. Pastor, N. Kümmerer, V. Schubert, A. Esteras-Chopo, C. G. Dotti, M. López de la Paz, L. Serrano, J. Mol. Biol. 2008, 375, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOlt7rI&md5=b6ae5d4ec0c606492dfbaaf2bd722e07CAS |

[8]  M. P. Mattson, Nature 2004, 430, 631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Gis7o%3D&md5=bac0bcc86174876804db293dede1b607CAS |

[9]  H. A. Lashuel, D. Hartley, B. M. Petre, T. Walz, P. T. Lansbury, Nature 2002, 418, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGmsrc%3D&md5=e14fd8bd12143b192e56a78546ecba5fCAS |

[10]  D. R. Howlett, K. H. Jennings, D. C. Lee, M. S. G. Clark, F. Brown, R. Wetzel, S. J. Wood, P. Camilleri, G. W. Roberts, Neurodegeneration 1995, 4, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzitlGmsQ%3D%3D&md5=8e4c8641b2054456a0ce0659b94b1bd1CAS |

[11]  S. Santini, G. Wei, N. Mousseau, P. Derreumaux, Structure 2004, 12, 1245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyrsLw%3D&md5=20352ca9aa101836e1e727d8b869669fCAS |

[12]  J. P. Schmittschmitt, J. M. Scholtz, Protein Sci. 2003, 12, 2374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslKlsb8%3D&md5=37091384816ecd7c424dc5d4afa12f80CAS |

[13]  C. L. Shen, R. M. Murphy, Biophys. J. 1995, 69, 640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1yjt7o%3D&md5=2eaa2c1af51561c0c95119eca3b1d1b3CAS |

[14]  H. Weingärtner, C. Cabrele, C. Herrmann, Phys. Chem. Chem. Phys. 2012, 14, 415.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. N. Baker, T. M. McCleskey, S. Pandey, G. A. Baker, Chem. Commun. 2004, 940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVGntb4%3D&md5=7ecb391f2ff2eef5f71328554adb3679CAS |

[16]  K. Fujita, D. R. MacFarlane, M. Forsyth, Chem. Commun. 2005, 4804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqs7rO&md5=2095e89f87a4a09df2c1a014a7e044c4CAS |

[17]  N. Byrne, L.-M. Wang, J.-P. Belieres, C. A. Angell, Chem. Commun. 2007, 2714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvV2mt7w%3D&md5=aaeaff9c865e820df1780c5cd09f34d2CAS |

[18]  H. R. Kalhor, M. Kamizi, J. Akbari, A. Heydari, Biomacromolecules 2009, 10, 2468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvV2gtb4%3D&md5=b155652a56133ee2123de10963589830CAS |

[19]  H. Hwang, H. Choi, H.-k. Kim, D. H. Jo, T. D. Kim, Anal. Biochem. 2009, 386, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFShsbY%3D&md5=7c067e63a6dd9fd197a108c1feaa1874CAS |

[20]  N. Debeljuh, C. J. Barrow, N. Byrne, Phys. Chem. Chem. Phys. 2011, 13, 16534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFagtbjM&md5=c0ff7a332a753f550ab7e0b7c7e881cdCAS |

[21]  N. Byrne, C. A. Angell, Chem. Commun. 2009, 1046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKns7c%3D&md5=a3aebd6bc2d32ee3ea8027d14b36aea0CAS |

[22]  N. Byrne, C. A. Angell, J. Mol. Biol. 2008, 378, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslWksbs%3D&md5=6194a55038cd6bc8c07fe7e442875b38CAS |

[23]  J. S. Wilkes, P. Wasserscheid, T. Welton, Introduction, in Ionic Liquids in Synthesis 2008, pp. 1–6 (Wiley-VCH: Weinheim).

[24]  J.-P. Belieres, C. A. Angell, J. Phys. Chem. B 2007, 111, 4926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCitb8%3D&md5=41403a7ce99d2933ccd740a7612c9222CAS |

[25]  J. Stoimenovski, E. I. Izgorodina, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2010, 12, 10341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOns7bK&md5=264a6c4ff3facc595a6ad6e8f5c229dbCAS |

[26]  J. P. Mann, A. McCluskey, R. Atkin, Green Chem. 2009, 11, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qtLo%3D&md5=2bfc2490a1c3f076dd45eee3b621b343CAS |

[27]  N. Byrne, B. Rodoni, F. Constable, S. Varghese, J. H. Davis, Phys. Chem. Chem. Phys. 2012, 14, 10119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVartb0%3D&md5=bae290952cdb40595518937fae581a40CAS |

[28]  N. Debeljuh, C. J. Barrow, L. Henderson, N. Byrne, Chem. Commun. 2011, 47, 6371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGgtr4%3D&md5=663f69ddcc6badeed2843d2154ca0853CAS |

[29]  N. Chaudhary, R. Nagaraj, J. Pept. Sci. 2011, 17, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1SgtA%3D%3D&md5=df70ec05102f71c36e1eaf660ea2f85bCAS |

[30]  L. J. Domigan, J. P. Healy, S. J. Meade, R. J. Blaikie, J. A. Gerrard, Biopolymers 2012, 97, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVelsLrP&md5=5b5c472e52054b13a16a7adc0ed4a1c9CAS |

[31]  M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 2003, 125, 15411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1aktL4%3D&md5=77a06c565dda919108f047ae43b31eafCAS |