Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Two New One-Dimensional Homospin Dy(iii) Compounds Showing Slow Magnetic Relaxation

Feng Luo A B , Yu-Mei Song A , Hai-Xiao Huang A , Xiao-Zhao Tian A , Gong-Ming Sun A , Yan Zhu A and Xue-Feng Feng A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 Jiangxi, P. R. China.

B Corresponding author. Email: ecitluofeng@163.com

Australian Journal of Chemistry 65(10) 1436-1442 https://doi.org/10.1071/CH12233
Submitted: 7 May 2012  Accepted: 19 June 2012   Published: 4 July 2012

Abstract

In this work, we present two new one-dimensional Dy(iii) compounds, namely [Dy3(L1)9]n (1, HL1 = benzoic acid) and {[Dy4(L2)14][Fe(phen)3]}n (2, HL2 = 3-nitrobenzoic acid, phen = 1,10-phenanthroline). In 1, three distinct coordination polyhedra for Dy(iii) sites including a six-coordinated DyO6 octahedron, a seven-coordinated DyO7 pentagonal bipyramid, and eight-coordinated DyO8 dodecahedron, are observed. These Dy(iii) ions are in turn bridged by L1–carboxylate to give rise to the 1D helical chain structure. Within 2, there are two crystallography-independent Dy(iii) ions that take the mono-capped trigonal bipyramidal geometry. Through L2-carboxylate bridges the Dy(iii) ions are associated together, resulting in the 1D chain structure. Direct current magnetic susceptibilities reveal ferromagnetic interactions, whilst dynamic magnetic studies via alternating current measurements disclose slow magnetic relaxation of these structures.


References

[1]  N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGitrc%3D&md5=9a41dad73d585240014cfc2069eb9ee4CAS |

[2]  (a) S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, S. Gao, Angew. Chem. Int. Edit. 2010, 49, 7448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGrsbrO&md5=c51a4b99c53e8e51544936a57e97c9deCAS |
      (b) A. Yamashita, A. Watanabe, S. Akine, T. Nabeshima, M. Nakano, T. Yamamura, T. Kajiwara, Angew. Chem. Int. Edit. 2011, 50, 4016.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. A. Damen, J. M. Lemente-Juan, E. Oronado, C. Artí-Gastaldo, A. Gaita-Arino, J. Am. Chem. Soc. 2008, 130, 8874.

[4]  (a) P. H. Lin, T. J. Burchell, R. Clérac, M. Murugesu, Angew. Chem. Int. Edit. 2008, 47, 8848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgtLbL&md5=cba47e9922ef8d897782e43eed1e1fc4CAS |
      (b) P. H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, M. Murugesu, Angew. Chem. Int. Edit. 2009, 48, 9489.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y.-N. Guo, G.-F. Xu, P. Gamez, L. Zhao, S.-Y. Lin, R. Deng, J. Tang, H.-J. Zhang, J. Am. Chem. Soc. 2010, 132, 8538.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. J. Hewitt, J. Tang, N. T. Madhu, C. E. Anson, Y. Lan, J. Luzon, M. Etienne, R. Sessoli, A. K. Powell, Angew. Chem. Int. Edit. 2010, 49, 6352.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) F. Luis, M. J. Martínez-Pérez, O. Montero, E. Coronado, S. Cardona-Serra, C. Martí-Gastaldo, J. M. Clemente-Juan, J. Sesé, D. Drung, T. Schurig, Phys. Rev. 2010, 82, 060403.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Giraud, W. Wernsdorfer, A. M. Tkachuk, D. Mailly, B. Barbara, Phys. Rev. Lett. 2001, 87, 057203.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, C. Paulsen, Phys. Rev. Lett. 1999, 82, 3903.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Edit. 2005, 44, 2931.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  F. Habib, P. H. Lin, J. Long, I. Korobkov, W. Wernsdorfer, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 8830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Krt7w%3D&md5=856d06d53bdb34c6cb13a9c04e7a61beCAS |

[7]  G. F. Xu, Q. L. Wang, P. Gamez, Y. Ma, R. Clérac, J. K. Tang, S. P. Yan, P. Cheng, D. Z. Liao, Chem. Commun. 2010, 46, 1506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFyhtLY%3D&md5=822b1ea130a0e772f54497b73f91a2e5CAS |

[8]  (a) N. Ishikawa, M. Sugita, N. Tanaka, T. Ishikawa, S.-Y. Koshihara, Y. Kaizu, Inorg. Chem. 2004, 43, 5498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFSnsbY%3D&md5=18d490d3b8b03a696e2034d82b137a4eCAS |
      (b) S. Takamatsu, T. Ishikawa, S.-Y. Koshihara, N. Ishikawa, Inorg. Chem. 2007, 46, 7250.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Y. Z. Zheng, Y. Lan, W. Wernsdorfer, C. E. Anson, A. K. Powell, Chemistry – Eur. J. 2009, 15, 12566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtrzJ&md5=8c8ddd7baef4750515fd5cecfe556a35CAS |
      (b) Y. Wang, X. Li, T. W. Wang, Y. Song, X. Z. You, Inorg. Chem. 2010, 49, 969.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. G. Huang, X. T. Wang, F. L. Jiang, S. Gao, M. Y. Wu, Q. Gao, W. Wei, M. C. Hong, Chemistry – Eur. J. 2008, 14, 10340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyrt7rL&md5=930c7265f0aa0bc93e7dbf8c68f51eabCAS |

[11]  (a) F. Luo, Z. W. Liao, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, M. B. Luo, S. J. Liu, W. Y. Xu, Dalton Trans. 2011, 40, 12651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFahs7%2FM&md5=c9ad2e113c939ee7a83275af263adc28CAS |
      (b) Y. Zhu, F. Luo, Y. M. Song, H. X. Huang, G. M. Sun, X. Z. Tian, Z. Z. Yuan, Z. W. Liao, M. B. Luo, S. J. Liu, W. Y. Xu, X. F. Feng, Dalton Trans. 2012, 41, 6749.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) R. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem. Int. Edit. 2011, 50, 6530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1eiurY%3D&md5=ae1ce00fe42991d9a7a4775f456a9c87CAS |
      (b) Y. N. Guo, G. F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. K. Tang, H. J. Zhang, L. F. Chibotaru, A. K. Powell, J. Am. Chem. Soc. 2011, 133, 11948.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) C. Coulon, R. Clérac, L. Lecren, W. Wernsdorfer, H. Miyasaka, Phys. Rev. B 2004, 69, 132408.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Bogani, R. Sessoli, M. G. Pini, A. Rettori, M. A. Novak, P. Rosa, M. Massi, M. E. Fedi, L. Giuntini, A. Caneschi, D. Gatteschi, Phys. Rev. B 2005, 72, 064406.
      (c) X. J. Li, X. Y. Wang, S. Gao, R. Cao, Inorg. Chem. 2006, 45, 1508.