Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Photoconversion of Spiropyran to Merocyanine in a Monolayer Observed Using Nanosecond Pump-Probe Brewster Angle Reflectometry

Bernhard Siebenhofer A B C , Sergey Gorelik D , Anton V. Sadovoy D , Martin J. Lear E , Hong Yan Song D , Christoph Nowak A B F G and Jonathan Hobley D G
+ Author Affiliations
- Author Affiliations

A Austrian Institute of Technology, AIT, Donau-City-Straße 1, 1220 Vienna.

B Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Research Technoplaza, XFrontiers Block, Singapore 63755.

C University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Muthgasse 11, 1190 Vienna, Austria.

D Institute of Materials Research and Engineering, IMRE, 3 Research Link, Singapore 117602.

E Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543.

F Centre of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria.

G Corresponding authors. Email: hobleyj@imre.a-star.edu.sg; C.Nowak@ait.ac.at

Australian Journal of Chemistry 65(3) 283-289 https://doi.org/10.1071/CH12093
Submitted: 13 February 2012  Accepted: 20 February 2012   Published: 21 March 2012

Abstract

A new apparatus for nanosecond-time-resolved Brewster angle reflectometry is described that can be used to measure transient angle-resolved reflectivity changes in thin films and monolayers in a single pulsed laser shot. In order to achieve this, a cylindrical lens is placed in the probe beam path replacing the goniometer that is usually used for angular scanning in other systems. Using two synchronized nanosecond pulsed lasers in pump-probe configuration it is possible to measure the kinetics of photoinduced conformational changes by altering the delay between pump and probe pulses. The system was used to observe nanosecond time-resolved photodynamics in a spiropyran monolayer at the air-water interface. After UV excitation the spiropyran converted to its merocyanine form in two stages. The first stage occurred with a timescale close to the instrument time resolution (tens of nanoseconds) whereas the second stage occurred over a few hundred nanoseconds.


References

[1]  P. Schaaf, P. Dejardin, A. Schmitt, Langmuir 1987, 3, 1131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFCgsbg%3D&md5=6005daa193ec507fd49911258972d934CAS |

[2]  A. Ulman, Chem. Rev. 1996, 96, 1533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Kntr4%3D&md5=06d953e7647eb475ed0b7b1365ef23ecCAS |

[3]  S. Kajimoto, N. Yoshii, J. Hobley, H. Fukumura, S. Okazaki, Chem. Phys. Lett. 2007, 448, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GnsbjL&md5=034254cb36082274fda0ac1dbed0cc50CAS |

[4]  S. Henon, J. Meunier, Rev. Sci. Instrum. 1991, 62, 936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlGmt7s%3D&md5=b9ca6cdb319de26e729021cdd7e452ebCAS |

[5]  D. Hoenig, D. Möbius, J. Phys. Chem. 1991, 95, 4590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFKjs7s%3D&md5=43cbf42a8258a796c326024f23843a0dCAS |

[6]  D. Hönig, D. Möbius, Thin Solid Films 1992, 210–211, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Siegel, D. Hoenig, D. Vollhardt, D. Moebius, J. Phys. Chem. 1992, 96, 8157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Witb0%3D&md5=9ad823ff7d93c4c5bc10b17f86401c6dCAS |

[8]  K. Sasaki, T. Nagamura, Appl. Phys. Lett. 1997, 71, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVGqtbY%3D&md5=95b9f0fcfcda84ec7216b6a46f8b2f9fCAS |

[9]  R. B. M. Schasfoort, A. J. Tudos, Handbook of Surface Plasmon Resonance 2008 (RSC Publishing: Cambridge, UK).

[10]  B. L. Frey, R. M. Corn, S. C. Weibel, Polarization-Modulation Approaches to Reflection Absorption Spectroscopy, in Handbook of Vibrational Spectroscopy 2001, Volume 2, pp. 1042–1056 (Eds J. Chalmers, P. R. Griffiths) (John Wiley & Sons: Chichester, UK).

[11]  S.-H. Kim, H.-J. Suh, K.-N. Koh, S.-A. Suck, H.-J. Choi, H.-S. Kim, Dyes Pigments 2004, 62, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVGit70%3D&md5=5a3cfe21766c91fc1e94d2e9258cca55CAS |

[12]  D. Kleine, J. Lauterbach, K. Kleinermans, P. Hering, Appl. Phys. B 2001, 72, 249.
         | 1:CAS:528:DC%2BD3MXhtVGisrs%3D&md5=dc189d9d3cf0d26531029890514017b6CAS |

[13]  J. A. Piest, M. Anni, R. Cingolani, G. Gigli, Synth. Met. 2008, 158, 1062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFahtL%2FN&md5=ec5aac99d0c8c7f1e7f0f5638d4d2408CAS |

[14]  I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, M. C. M. van de Sanden, Appl. Phys. Lett. 2004, 84, 3079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFyhsL0%3D&md5=6a3631d109f143961d72ab01ea021f9cCAS |

[15]  R. N. Muir, A. J. Alexander, Phys. Chem. Chem. Phys. 2003, 5, 1279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKrt7c%3D&md5=857b53b97917a2b4bca5c18431f32c26CAS |

[16]  C. Zhu, B. Xiang, L. Zhu, R. Cole, Chem. Phys. Lett. 2008, 458, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFOnur4%3D&md5=151b9196a103807d340dd65c7254cdeeCAS |

[17]  X. Wang, M. Hinz, M. Vogelsang, T. Welsch, D. Kaufmann, H. Jones, Chem. Phys. Lett. 2008, 467, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrtbrP&md5=3c4739d4f757c044c1f74b198b7e792bCAS |

[18]  J. Hobley, T. Oori, S. Kajimoto, K. Hatanaka, G. Kopitkovas, T. Lippert, H. Fukumura, Colloid Surface A 2006, 284–285, 514.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. Hobley, T. Oori, S. Kajimoto, S. Gorelik, D. Hönig, K. Hatanaka, H. Fukumura, Appl. Phys. A–Mater. 2008, 93, 947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KnsLfJ&md5=829a1cddbb0c71993bff13a06ce3834aCAS |

[20]  J. Hobley, S. Gorelik, T. Oori, S. Kajimoto, H. Fukumura, J. Matsui, T. Miyashita, Biointerphases 2010, 5, FA105.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Hobley, T. Oori, S. Gorelik, S. Kajimoto, H. Fukumura, D. Hönig, J. Nanosci. Nanotechnol. 2009, 9, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Gorelik, J. Hobley, M. J. Lear, H-Y. Song, S. Y. S. Yong, J. Cheng, Int. J. Nanosci. 2009, 8, 213.
         | 1:CAS:528:DC%2BD1MXmvVeltr8%3D&md5=d87418dc34725e51df8b68fb9080abc0CAS |

[23]  S. Gorelik, H.-Y. Song, M. J. Lear, J. Hobley, Photochem. Photobiol. Sci. 2010, 9, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqt7Y%3D&md5=11f8243a0b26b42ca7f17e7c1a88ea84CAS |

[24]  M. Matsumoto, T. Nakazawa, R. Azumi, H. Tachibana, Y. Yamanaka, H. Sakai, M. Abe, J. Phys. Chem. B 2002, 106, 11487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOisr4%3D&md5=11d9dab147b95ed3f9da0fb6d5d56400CAS |

[25]  T. Minami, N. Tamai, T. Yamazaki, I. Yamazaki, J. Phys. Chem. 1991, 95, 3988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFOrsb8%3D&md5=13a614b45971fd0a723fc7384649e328CAS |

[26]  E. E. Polymeropoulos, D. Möbius, Ber. Bunsenges. Phys. Chem 1979, 83, 1215.
         | 1:CAS:528:DyaL3cXit1ChsL8%3D&md5=4c40182f1a7ffe1aa41a51cb1b30b5efCAS |

[27]  M. Bletz, U. Pfeifer-Fukumura, U. Kolb, W. Baumann, J. Phys. Chem. A 2002, 106, 2232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVahsQ%3D%3D&md5=7d8784b2c8bf137f4f3195a037e50b84CAS |

[28]  J. Hobley, M. J. Lear, H. Fukumura, in Photochemistry of Organic Molecules in Isotropic and Anisotropic Media 2003 (Eds V. Ramamurthy, K. S. Schanze) (Marcel Dekker: New York, NY).

[29]  J. Hobley, V. Malatesta, Phys. Chem. Chem. Phys. 2000, 2, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVKgt7k%3D&md5=8451551cab42512536a9dfec45de3e6aCAS |

[30]  J. Hobley, V. Malatesta, W. Giroldini, W. Stringo, Phys. Chem. Chem. Phys. 2000, 2, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVKgt7g%3D&md5=1367415b42f57cb3a069e8b689c041feCAS |

[31]  J. Hobley, V. Malatesta, R. Millini, L. Montanari, W. O. N. Parker, Phys. Chem. Chem. Phys. 1999, 1, 3259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1aht74%3D&md5=4d207a4df23b840bc9df3b060d62cb2dCAS |

[32]  D. A. Reeves, F. Wilkinson, J. Chem. Soc., Faraday Trans. 1973, 2, 1381.

[33]  J. Hobley, F. Wilkinson, J. Chem. Soc., Faraday Trans. 1996, 92, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKksb0%3D&md5=8bacdb43746f16f66a125f282bde4141CAS |

[34]  D. R. Lide, H. P. R. Frederiske (Eds), CRC Handbook of Chemistry and Physics 1996, 77th Edition, Section 6, pp. 218–221 (CRC Press: New York, NY).