Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Surface Modified Gold Nanorods in Two Photon Luminescence Imaging

J. B. Zhang A G , N. K. Balla B C , C. Gao B , C. J. R. Sheppard B C , L. Y. L. Yung D , S. Rehman B E , J. Y. Teo F , S. R. Kulkarni A , Y. H. Fu A and Sze Jia Yin A
+ Author Affiliations
- Author Affiliations

A Data Storage Institute, Agency for Science Technology and Research, Singapore.

B Division of BioEngineering, Faculty of Engineering, National University of Singapore, Singapore.

C BioSyM, Singapore MIT Alliance for Research and Technology, Singapore.

D Department of Chemical and Biomolecule Engineering, Faculty of Engineering, National University of Singapore, Singapore.

E Singapore Eye Research Institute, National University of Singapore, Singapore.

F Industry attachment student from Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.

G Corresponding author. Email: zhang_jingbo@dsi.a-star.edu.sg

Australian Journal of Chemistry 65(3) 290-298 https://doi.org/10.1071/CH12037
Submitted: 23 January 2012  Accepted: 28 February 2012   Published: 21 March 2012

Abstract

Gold nanorods (AuNRs) possess unique optical properties which make them good contrast agents for optical microscopy. Their longitudinal plasmon resonance peak can be easily tuned from red to near infrared wavelength by increasing their aspect ratio to match the wavelengths of different imaging modalities. AuNRs are also stronger scatterers of light as compared with gold nanospheres. Nevertheless what sets them apart from other gold nanoparticles is their strong multiphoton luminescence. AuNRs are therefore being increasingly used as contrast agents for multiphoton microscopy of biological samples. In this study, control of the longitudinal resonance peak of gold nanorods is investigated with comparison of two chemical synthesis approaches. Both based on a seed-mediated method, one approach is to tune the aspect ratio through manipulation of the ratio of gold seeds to gold salt and the other is through variation of the volume of hydrochloric acid. The synthesized gold nanorods were made biocompatible by replacing the cytotoxic cetyltrimethylammonium bromide (CTAB) molecules with either silica (SiO2) or polyethylene glycol (PEG). Multiphoton imaging of gold nanorods taken up by cells was demonstrated and the effect of PEG chain length on passive uptake of gold nanorods by cells is discussed.


References

[1]  C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, P. Hankins, Chem. Commun. 2008, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFKrsg%3D%3D&md5=359352806421b1847dea3831236b9c79CAS |

[2]  E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Small 2005, 1, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVaiu74%3D&md5=cdd8bf129ad0a567c7e8ea507d698628CAS |

[3]  S. Eustis, M. A. El-Sayed, Chem. Soc. Rev. 2006, 35, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVekt7c%3D&md5=51ece2f4ec3acc33d936a7bfd1f09f02CAS |

[4]  X. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. (Deerfield Beach Fla.) 2009, 21, 4880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WltL3F&md5=df92dce845c6c83f9e4cd6d960da3e56CAS |

[5]  T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, H. Chen, ACS Nano 2010, 4, 3087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVSls7o%3D&md5=fe4643eeda4448741ef5a99cb3955e4fCAS |

[6]  X. Shen, L. Chen, D. Li, L. Zhu, H. Wang, C. Liu, Y. Wang, Q. Xiong, H. Chen, ACS Nano 2011, 5, 8426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ChtLrO&md5=19de0b8116fb7467a32a6a868d6f66d8CAS |

[7]  Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, H. Chen, J. Am. Chem. Soc. 2012, 134, 2004.
         | 1:CAS:528:DC%2BC38Xks1WrtQ%3D%3D&md5=aacf03182175941ae88c9550c1e715c4CAS |

[8]  H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J.-X. Cheng, Proc. Natl. Acad. Sci. USA 2005, 102, 15752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wru7jI&md5=3b9653c93a95165736148673a230863bCAS |

[9]  T. K. Sau, C. J. Murphy, Langmuir 2004, 20, 6414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFGkurY%3D&md5=235b2dd563ccc5d31f78c0473ab5b0b0CAS |

[10]  R. R. Anderson, J. A. Parrish, J. Invest. Dermatol. 1981, 77, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkt1Wkt7w%3D&md5=b6348de06ed6486436673f0f35ed4f12CAS |

[11]  Z. Qiuqiang, Q. Jun, L. Xin, H. Sailing, Nanotechnology 2010, 21, 055704.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Alkilany, C. Murphy, J. Nanopart. Res. 2010, 12, 2313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCju77N&md5=ce3c75571cccfde0410abb6942e2ed82CAS |

[13]  J. Perez-Juste, I. Pastoriza-Santos, M. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 2005, 249, 1870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Smur0%3D&md5=4889cb81bc6fccc5a89f4db32707667cCAS |

[14]  T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Control. Release 2006, 114, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Omtbk%3D&md5=ad3a117af6eebe63dd9663a4dbc76b96CAS |

[15]  B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15, 1957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7w%3D&md5=2f97c10f3c8e53c8e2c053650926778dCAS |

[16]  S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed. 2005, 44, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Cqurc%3D&md5=7479451e764db6ee2826bd1400e37bbaCAS |

[17]  R. Zou, X. Guo, J. Yang, D. Li, F. Peng, L. Zhang, H. Wang, H. Yu, CrystEngComm 2009, 11, 2797.
         | 1:CAS:528:DC%2BC3cXhsVeitbbJ&md5=0d9e4f86536fecd1b0deee8eddffa970CAS |

[18]  I. Gorelikov, N. Matsuura, Nano Lett. 2008, 8, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgtbfF&md5=3a544314d6feab344ca61bfc62ab2a96CAS |

[19]  I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, Chem. Mater. 2006, 18, 2465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsleltLk%3D&md5=27d183e2b59ae9396983f5242908c6a5CAS |

[20]  J. C. Y. Kah, K. Y. Wong, K. G. Neoh, J. H. Song, J. W. P. Fu, S. Mhaisalkar, M. Olivo, C. J. R. Sheppard, J. Drug Target. 2009, 17, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGmtrs%3D&md5=d8fa7ebab31ad9e2f0e5076c3f368cc0CAS |