Synthesis and Coordination Chemistry of 2-(Di-2-pyridylamino)pyrimidine; Structural Aspects of Spin Crossover in an FeII Complex*
Rachel S. Crees A , Boujemma Moubaraki B , Keith S. Murray B and Christopher J. Sumby A CA School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia.
B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: christopher.sumby@adelaide.edu.au
Australian Journal of Chemistry 65(7) 842-850 https://doi.org/10.1071/CH12045
Submitted: 25 January 2012 Accepted: 26 February 2012 Published: 18 May 2012
Abstract
2-(Di-2-pyridylamino)pyrimidine (L), a potentially ditopic tetradentate ligand, was synthesized from commercially available di-2-pyridylamine and 2-chloropyrimidine. Despite being capable of bridging two metal atoms with bidentate chelation of both metal centres, L prefers to chelate or bridge through the more basic pyridyl donors of the di-2-pyridylamine moiety. Mononuclear trans-[Fe(NCS)2(L)2] and [Cu(L)2(H2O)](BF4)2·H2O complexes, and a discrete [Ag2(L)4](PF6)2 metallo-macrocycle, were isolated and structurally characterized by X-ray crystallography. A mononuclear palladium complex [PdCl2(L)]·(solvate), where solvate = 1/2H2O or CH2Cl2, was also readily obtained in 71 % yield. One example of the ligand acting as a bis(bidentate) bridging ligand was observed in a dinuclear [(PdCl2)2(L)]·3/4H2O complex that was obtained only in very low yield (~3 %) from the reaction that produced [PdCl2(L)]·1/2H2O. trans-[Fe(NCS)2(L)2] undergoes a temperature-dependent high-spin–low-spin crossover at ~205 K that was observed by X-ray crystallography and magnetic measurements, and attempts were made to understand the structural basis of this process. Despite efforts to isolate examples of L bridging two iron(ii) centres, only the mononuclear trans-[Fe(NCS)2(L)2] species could be obtained.
References
[1] K. S. Murray, Eur. J. Inorg. Chem. 2008, 3101.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVaqtb0%3D&md5=26ebb913292f4c76b987052f3b00b235CAS |
[2] S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata, Y. H. Lee, Coord. Chem. Rev. 2011, 255, 1981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Cis7c%3D&md5=39e51ea8543ff604739bc3402dd6138aCAS |
[3] M. A. Halcrow, Chem. Soc. Rev. 2011, 40, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12msrc%3D&md5=5ecf6c7b25607a18cd1f3162258988a1CAS |
[4] J. Olguin, S. Brooker, Coord. Chem. Rev. 2011, 255, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnsrfI&md5=b83f357a75aa7957c309c56e310d15b5CAS |
[5] C. Atmani, F. El Hajj, S. Benmansour, M. Marchivie, S. Triki, F. Conan, V. Patinec, H. Handel, G. Dupouy, C. J. Gomez-Garcia, Coord. Chem. Rev. 2010, 254, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVGjt70%3D&md5=1afba3379b12871049199603594de0bbCAS |
[6] M. A. Halcrow, Coord. Chem. Rev. 2009, 253, 2493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htr%2FP&md5=82066ad62fd5e5cd9e15773c70729f8aCAS |
[7] K. S. Murray, Aust. J. Chem. 2009, 62, 1081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFensbrO&md5=866072d0a2d566c7c0a708d396b208fcCAS |
[8] S. Brooker, J. A. Kitchen, Dalton Trans. 2009, 7331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrs7bJ&md5=c1a3564816ecbf20abfab0ead3d8d89aCAS |
[9] V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVGhsb4%3D&md5=384fa1278a671b7867771b48c519b3a5CAS |
[10] J. A. Real, A. B. Gaspar, V. Niel, M. C. Munoz, Coord. Chem. Rev. 2003, 236, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVyqsA%3D%3D&md5=e5166299b737584f9b5c2dd4b0f21032CAS |
[11] J. A. Real, I. Castro, A. Bousseksou, M. Verdaguer, R. Burriel, J. Linares, F. Varret, Inorg. Chem. 1997, 36, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVyisg%3D%3D&md5=a7a6b979e768d5cfbae48f8423e3aefbCAS |
[12] C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlOht74%3D&md5=0b97bb72a5f93221f2593b013c6845acCAS |
[13] C. J. Sumby, Coord. Chem. Rev. 2011, 255, 1937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGgurs%3D&md5=38d133854b8d7bdc4ee05d5467695198CAS |
[14] W. M. Bloch, C. J. Sumby, Chem. Commun. 2012, 2534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2jt7s%3D&md5=966928ad299f0eea339314f7d76ca7cdCAS |
[15] J. J. M. Amoore, C. J. Kepert, J. D. Cashion, B. Moubaraki, S. M. Neville, K. S. Murray, Chemistry 2006, 12, 8220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ektL3M&md5=c88acb18597fb6c3a3af480d31d9db34CAS |
[16] J. J. M. Amoore, S. M. Neville, B. Moubaraki, S. S. Iremonger, K. S. Murray, J.-F. Letard, C. J. Kepert, Chemistry 2010, 16, 1973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjtLk%3D&md5=756c805cc608babe4cc9cbda5f626c84CAS |
[17] C. J. Sumby, B. A. Leita, B. Moubaraki, K. S. Murray, P. J. Steel, Aust. J. Chem. 2009, 62, 1142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFensb7O&md5=c1d644b48e4b2392b07840e6b2bcbadbCAS |
[18] S. M. Neville, B. A. Leita, G. J. Halder, C. J. Kepert, B. Moubaraki, J.-F. Letard, K. S. Murray, Chemistry 2008, 14, 10123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCqtr3E&md5=4ce3423ff521ea6d95f05c217cbb5995CAS |
[19] S. M. Neville, B. A. Leita, D. A. Offerman, M. B. Duriska, B. Moubaraki, K. W. Chapman, G. J. Halder, K. S. Murray, Eur. J. Inorg. Chem. 2007, 1073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFehtbg%3D&md5=ca78f9e7389d2675eba383697bfbb811CAS |
[20] M. Quesada, V. A. de la Pena-O’Shea, G. Aromi, S. Geremia, C. Massera, O. Roubeau, P. Gamez, J. Reedijk, Adv. Mater. 2007, 19, 1397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKnt7s%3D&md5=453e4f1ac3a822d3290d2d1f5a6392ccCAS |
[21] M. Quesada, M. Monrabal, G. Aromi, V. A. de la Pena-O’Shea, M. Gich, E. Molins, O. Roubeau, S. J. Teat, E. J. MacLean, P. Gamez, J. Reedijk, J. Mater. Chem. 2006, 16, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVyhs7o%3D&md5=0a7ff9ed320e7abd9004f6ba6d6d6b03CAS |
[22] M. Quesada, P. de Hoog, P. Gamez, O. Roubeau, G. Aromi, B. Donnadieu, C. Massera, M. Lutz, A. L. Spek, J. Reedijk, Eur. J. Inorg. Chem. 2006, 1353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsleitLY%3D&md5=ec36ac04927fa3b94ec4f2bf4a5ff7f9CAS |
[23] T. M. Ross, B. Moubaraki, K. S. Wallwork, S. R. Batten, K. S. Murray, Dalton Trans. 2011, 40, 10147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqs7rP&md5=ba5900f643c6770286f3187c10e7436eCAS |
[24] T. M. Ross, B. Moubaraki, S. M. Neville, S. R. Batten, K. S. Murray, Dalton Trans. 2012, 41, 1512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVantw%3D%3D&md5=50d2e42d256cc0337c6c42fe810763d6CAS |
[25] K. K. Mosny, R. H. Crabtree, Inorg. Chim. Acta 1996, 247, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Sntr4%3D&md5=c29a996ff496dfbc2de517a5b9692c4dCAS |
[26] P. Gütlich, H. A. Goodwin (Eds.) Top. Curr. Chem. 2004, 233–235.
[27] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=a5792f9a009cac259d4f5254e61bc964CAS |
[28] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford University Press: Oxford).
[29] M. Domagała, S. J. Grabowski, K. Urbaniak, G. Mlostoń, J. Phys. Chem. A 2003, 107, 2730.
| Crossref | GoogleScholarGoogle Scholar |
[30] B. Antonioli, D. J. Bray, J. K. Clegg, K. Gloe, K. Gloe, O. Kataeva, L. F. Lindoy, J. C. McMurtrie, P. J. Steel, C. J. Sumby, M. Wenzel, Dalton Trans. 2006, 4783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGgsr3O&md5=76419f36d44f91bd8fded01b822074dbCAS |
[31] C. J. Sumby, P. J. Steel, Inorg. Chim. Acta 2007, 360, 2100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Crs7g%3D&md5=251a70694b7e92a4c5bdb1c2fce13320CAS |
[32] A. W. Addison, T. N. Rao, J. Reedijk, J. Vanrijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=d3f5a6810758b0e5933aa8dc1b85847bCAS |
[33] C. J. Sumby, P. J. Steel, J. Coord. Chem. 2008, 61, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtbvM&md5=6d3b7a3f6c1483810d22036631631dcdCAS |
[34] R. L. Martin, A. H. White, Trans. Met. Chem. 1968, 4, 113.
| 1:CAS:528:DyaF1MXjtFOgtg%3D%3D&md5=aae59607ad77766a59c60f8131abc1c9CAS |
[35] M. S. Kharasch, R. C. Seyler, F. R. Mayo, J. Am. Chem. Soc. 1938, 60, 882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXivFOguw%3D%3D&md5=3f1e916ee50474fa88e9cd11ced0c194CAS |
[36] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
| 1:CAS:528:DyaK3cXksFSgsrc%3D&md5=09b52b130bb806d940d5e8080af07d30CAS |
[37] G. M. Sheldrick, SHELXL-97 1997 (University of Göttingen: Göttingen, Germany).
[38] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=b8ca8c15e12e7249c9068cf6390b143aCAS |
[39] Persistence of Vision Raytracer Pty. Ltd, POV-Ray, 2003–2008 (Melbourne).
[40] G. M. Sheldrick, CIFTAB 1997 (University of Göttingen: Göttingen, Germany).