Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Incommensurate Modulated Structures in the Ta2O5–Al2O3 System

Siegbert Schmid A B and Veronica Fung A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. Email: siegbert.schmid@sydney.edu.au

Australian Journal of Chemistry 65(7) 851-859 https://doi.org/10.1071/CH12080
Submitted: 6 February 2012  Accepted: 4 March 2012   Published: 5 June 2012

Abstract

Members of the (1 – x)Ta2O5·xAl2O3 series were synthesized, and the structures investigated using synchrotron X-ray powder diffraction and neutron powder diffraction data for the first time. Structural models were developed and refined using the Rietveld method and a [3 + 1] dimensional incommensurately modulated composite structure approach with a composition dependent modulation vector q, and superspace group Xmmm(0β0)s00. Displacive atomic modulation functions across the (1 – x)Ta2O5·xAl2O3 series were found to be very similar, and strongly resemble those for the Ta2O5–WO3 system, in line with the notion that there are structure types in higher dimensional space just as there are in 3D space. Bond valence sum calculations and bond distance plots showed that the introduction of the modulation to the structural model generally led to more favourable bond valence sum values and bond distances. Fourier difference plots were examined, and the occupational modulation of aluminium refined to determine that the aluminium atoms preferentially occupy the octahedral sites.


References

[1]  E. Atanassova, D. Spasov, Microelectron. Reliab. 2002, 42, 1171.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, K. Kim, Nat. Mater. 2011, 10, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Omtrc%3D&md5=bb0d3da6a1cc4d0bc8ef6a9d072f88a2CAS |

[3]  K. Schmitt, K. Oehse, G. Sulz, C. Hoffmann, Sensors (Basel Switzerland) 2008, 8, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVCrur8%3D&md5=39620ee32e5cf6a461b548a91f47422aCAS |

[4]  C. Chaneliere, J. L. Autran, R. B. Devine, B. Balland, Mater. Sci. Eng. 1998, R22, 269.

[5]  M. Hiratani, S. Kimura, Appl. Phys. Lett. 2002, 81, 2433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntF2gu78%3D&md5=79fae523e6590b0328a25c1fa626facdCAS |

[6]  S. Lagergren, A. Magneli, Acta Chem. Scand. 1952, 6, 444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXjs1yluw%3D%3D&md5=ae06192be06da7e0678dc169b3f80900CAS |

[7]  X. Q. Liu, X. D. Han, Z. Zhang, L. F. Ji, Y. J. Jiang, Acta Mater. 2007, 55, 2385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2ht74%3D&md5=0e130f44cf342aeaae2a4977028f897dCAS |

[8]  N. C. Stephenson, R. S. Roth, Acta Crystallogr. B 1971, 27, 1037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFCmsbg%3D&md5=677dc3ad9fd18a5f68ca481c7f7dffc8CAS |

[9]  I. E. Grey, W. G. Mumme, R. S. Roth, J. Solid State Chem. 2005, 178, 3308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SgsbvN&md5=21dfae8b709a66885cfa560269e36d3bCAS |

[10]  R. S. Roth, J. L. Waring, J. Res. Nat. Bur. Stand. A 1970, 74, 485.
         | 1:CAS:528:DyaE3cXltVaktbo%3D&md5=d1ce3dd7826af9beac6751a92ff0185fCAS |

[11]  R. S. Roth, J. L. Waring, W. S. Brower, J. Res. Nat. Bur. Stand. A 1970, 74, 477.
         | 1:CAS:528:DyaE3cXltVaktb0%3D&md5=1ef335cb1920e7f77e06f58b5b3fb7fcCAS |

[12]  J. M. Williams, R. J. D. Tilley, G. Harburn, R. P. Williams, J. Solid State Chem. 1991, 92, 460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Wnsrc%3D&md5=263a876d6cdb79196941462ca1e0ff98CAS |

[13]  N. C. Stephenson, R. S. Roth, Acta Crystallogr. B 1971, 27, 1010.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFCnu74%3D&md5=4a052d8a0777a766d71662295d008d60CAS |

[14]  N. C. Stephenson, R. S. Roth, Acta Crystallogr. B 1971, 27, 1018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFCmsbc%3D&md5=172c8cab377e9e512ecd70da5e226b92CAS |

[15]  N. C. Stephenson, R. S. Roth, Acta Crystallogr. B 1971, 27, 1025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFCmsbY%3D&md5=2045aaf0a973118a2ed504ee680ac352CAS |

[16]  N. C. Stephenson, R. S. Roth, Acta Crystallogr. B 1971, 27, 1031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFCmsbk%3D&md5=f5a52d84eeb53056f9094f37542275adCAS |

[17]  T. Miyano, J. Electron Microsc. 1998, 47, 47.
         | 1:CAS:528:DyaK1cXivFWlur8%3D&md5=1a7897ea39a6b99db4e9e8c3a9a78334CAS |

[18]  C. Askeljung, B.-O. Marinder, M. Sundberg, J. Solid State Chem. 2003, 176, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWntLo%3D&md5=aaaea17c7d529eaba81600627c8328a0CAS |

[19]  S. Schmid, R. L. Withers, J. G. Thompson, J. Solid State Chem. 1992, 99, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVait7s%3D&md5=f8cf2f9e36f0cf0bd66b576fcf7c36a2CAS |

[20]  R. L. Withers, S. Schmid, J. G. Thompson, Prog. Solid State Chem. 1998, 26, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFGktbY%3D&md5=44c8676f698963e99af97846cac80d8dCAS |

[21]  S. Schmid, K. Fütterer, J. G. Thompson, Acta Crystallogr. B 1996, 52, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Schmid, J. G. Thompson, A. D. Rae, B. D. Butler, R. L. Withers, N. Ishizawa, S. Kishimoto, Acta Crystallogr. B 1995, 51, 698.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  H. T. Stokes, B. J. Campbell, S. van Smaalen, Acta Crystallogr. A 2011, 67, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Moser, Schweiz. Mineral. Petrogr. Mitt. 1965, 45, 35.
         | 1:CAS:528:DyaF2MXkvFeqtbo%3D&md5=d4e890d61780f053bbdb8a412f8429b1CAS |

[25]  R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. M. Perez-Mato, G. Madariaga, F. J. Zúñiga, A. Garcia Arribas, Acta Crystallogr. A 1987, 43, 216.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. D. Rae, S. Schmid, J. G. Thompson, R. L. Withers, N. Ishizawa, Acta Crystallogr. B 1995, 51, 709.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  I. D. Brown, D. Altermatt, Acta Crystallogr. B 1985, 41, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Schmitt, C. Brönnimann, E. F. Eikenberry, F. Gozzo, C. Hörmann, R. Horisberger, B. Patterson, Nucl. Instrum. Methods Phys. Res. A 2003, 501, 267.
         | 1:CAS:528:DC%2BD3sXivVOksL4%3D&md5=5f461460aae1588fb9ebaf2580bc51ecCAS |

[30]  M. Dušek, V. Petřiček, L. Palatinus, Journal of Physics: Conference Series 2010, 226, 1.