Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structures of 4-Iminopyrido[1,2-a]pyrimidines, Pyrido[1,2-a]pyrimidin-4-ones, Pyridopyrimidinium Olates, and Thiazolo[3,2-a]pyrimidine Analogues

Paul V. Bernhardt A and Curt Wentrup A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.

B Corresponding author. Email: wentrup@uq.edu.au

Australian Journal of Chemistry 65(4) 371-375 https://doi.org/10.1071/CH12040
Submitted: 24 January 2012  Accepted: 1 March 2012   Published: 2 April 2012

Abstract

The Structure-Correlation Principle of Bürgi and Dunitz is invoked in an analysis of the structures of 2-chloro-8-methyl-4-(2-(4-picolinyl)imino-4H-pyrido[1,2-a]pyrimidine 8, 7-chloro-5-(2-thiazolyl)imino-5H-thiazolo[3,2-a]pyrimidine 9, 2-methylamino-4H-pyrido[1,2-a]pyrimidin-4-one 10, 7-methylthio-5H-thiazolo[3,2-a]pyrimidin-5-one 11, 2,3-dihydro-7-methylthio-5H-thiazolo[3,2-a]pyrimidin-5-one 12, and 1-methyl-2-[(o-tert-butylphenyl)imino]-1,2-dihydropyrido[1,2-a]pyrimidin-1-ium-4-olate 13, which have been determined by X-ray crystallography. The most notable structural peculiarities are the long ‘amidine’ and ‘amide’ C–N bonds (1.40–1.50 Å) and the tilting of the ‘amidine’ C=N and ‘amide’ C=O groups towards a ring nitrogen atom (CH12040_IE1.gifNCX = 114–118°). Also the ‘amidine’ C=N (1.28 Å) and ‘amide’ C=O bonds (1.22–1.24 Å) are long, i.e. in the normal range for resonance-stabilized amidines and amides in spite of the lack of such resonance in these compounds. These features mimic the transition states for ring opening to ketenes. The long amidine and amide C–N bonds and acute NCX angles are in accord with the observed thermal ring opening to ketenimines and ketenes, respectively.


References

[1]  H. G. Andersen, D. Kvaskoff, C. Wentrup, Aust. J. Chem. 2012, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Shtaiwi, C. Wentrup, J. Org. Chem. 2002, 67, 8558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVWgsr4%3D&md5=f8ffd7e5329f9e6bc5384f1b7b45c26dCAS |

[3]  C. Plüg, B. Wallfisch, H. G. Andersen, P. V. Bernhardt, L.-J. Baker, G. R. Clark, M. W. Wong, C. Wentrup, J. Chem. Soc., Perkin Trans. 2 2000, 2096.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. Plüg, W. Frank, C. Wentrup, J. Chem. Soc., Perkin Trans. 2 1999, 1087.

[5]  H. G. Andersen, U. Mitschke, C. Wentrup, J. Chem. Soc., Perkin Trans. 2 2001, 602.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) H. B. Bürgi, J. D. Dunitz, Acc. Chem. Res. 1983, 16, 153.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. R. Pool, J. M. White, Org. Lett. 2000, 2, 3505.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Birney, T. K. Lim, J. H. P. Koh, B. R. Pool, J. M. White, J. Am. Chem. Soc. 2002, 124, 5091.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. R. Unruh, D. M. Birney, J. Am. Chem. Soc. 2003, 125, 8529.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H.-X. Wei, C. Zhou, S. Ham, J. M. White, D. M. Birney, Org. Lett. 2004, 6, 4289.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. W. Goh, S. M. Danczak, T. K. Lim, J. M. White, J. Org. Chem. 2007, 72, 2929.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  W. E. Thiessen, H. Hope, J. Am. Chem. Soc. 1967, 89, 5977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtVyktbo%3D&md5=0e43a0d9257e59bb7c0fcbbe3b90e64dCAS |

[8]  P. Bernhardt, D. Kvaskoff, R. N. Veedu, C. Wentrup, Aust. J. Chem. 2012, 65,
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. G. Andersen, C. Wentrup, Aust. J. Chem. 2012, 65, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFaqtL0%3D&md5=d8818640ae8cbb8807979c2c8a946201CAS |

[10]  H. Bibas, D. W. J. Moloney, R. Neumann, M. Shtaiwi, P. V. Bernhardt, C. Wentrup, J. Org. Chem. 2002, 67, 2619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFymtrY%3D&md5=992080d3f8f3dbddc13b501d9df5dd4aCAS |

[11]  M. Di Braccio, G. Roma, G. C. Grossi, G. Ciarello, J. Heterocycl. Chem. 1992, 29, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVyntbg%3D&md5=fc9c6f5ab3c0cd27a2b3e951d0d67607CAS |

[12]  E. J. Masters, M. T. Bogert, J. Am. Chem. Soc. 1942, 64, 2712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXjs1am&md5=4ae2131ee9c15d7199e64930f409c71aCAS |

[13]  E. Ziegler, H. Biemann, Monatsh. Chem. 1962, 93, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlKgsbY%3D&md5=bfe96cf47ca4339cdaba75146f2929f3CAS |

[14]  L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=a99bb00e596a61480b8be4159291b3beCAS |

[15]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=631f2e5f27cc94401b67d1297e3db297CAS |