An Institutional Approach to Solar Fuels Research
Johannes Messinger A
+ Author Affiliations
- Author Affiliations
A Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden. Email: Johannes.Messinger@chem.umu.se
Australian Journal of Chemistry 65(6) 573-576 https://doi.org/10.1071/CH12020
Submitted: 18 January 2012 Accepted: 25 February 2012 Published: 17 May 2012
Abstract
This account gives a brief overview of various directions in current solar fuels research. On that basis, the necessity for an interdisciplinary approach is argued, and an institutional way for promoting this development is presented using the example of the Chemistry Biology Centre (KBC) at Umeå University in Sweden.
References
[1] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=e4252961598780ced30bcd2df19c9437CAS |
[2] J. Messinger, D. Shevela, in Fundamentals of Materials for Energy and Environmental Sustainability (Eds D. S. Ginley, D. Cahen) 2012, pp. 302–314 (Materials Research Society: Cambridge).
[3] Molecular Solar Fuels (Eds T. J. Wydrzynski, W. Hillier) 2012 (RSC Publishing: Cambridge).
[4] Fundamentals of Materials for Energy and Environmental Sustainability (Eds D. S. Ginley, D. Cahen) 2012 (Materials Research Society: Cambridge).
[5] H. Dau, I. Zaharieva, Acc. Chem. Res. 2009, 42, 1861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgur%2FO&md5=a955f8d8116974ec49b5105edbc69e80CAS |
[6] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, et al. Science 2011, 332, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsLk%3D&md5=7fef5a2be0a1e90cdea051d4e8001fa9CAS |
[7] L. Hammarström, J. R. Winkler, H. B. Gray, S. Styring, Science 2011, 333, 288.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. P. Long, X. G. Zhu, S. L. Naidu, D. R. Ort, Plant Cell Environ. 2006, 29, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlyltrw%3D&md5=397f7930635954786c22b03b064eed0bCAS |
[9] W. Lubitz, E. J. Reijerse, J. Messinger, Energy Environ. Sci. 2008, 1, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2htrvE&md5=b3cb1a4cb93656028c8b994f205f19a8CAS |
[10] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, et al. Science 2011, 334, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vF&md5=e0298161b92e218b9b45c56538dc6eb5CAS |
[11] W. Ames, D. A. Pantazis, V. Krewald, N. Cox, J. Messinger, W. Lubitz, et al. J. Am. Chem. Soc. 2011, 133, 19743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ju7%2FL&md5=148b2005d852cb0d83ac63edfcefae10CAS |
[12] D. Shevela, S. Koroidov, M. M. Najafpour, J. Messinger, P. Kurz, Chemistry 2011, 17, 5415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvF2iu74%3D&md5=e0d2d0b5cda8f85979cd170838dd2e06CAS |
[13] I. Zaharieva, M. M. Najafpour, M. Wiechen, M. Haumann, P. Kurz, H. Dau, Energy Environ. Sci. 2011, 4, 2400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWrtrrM&md5=8c2d92f1dd89bcaf6b82fd227f33e71aCAS |
[14] M. Wiechen, H. M. Berends, P. Kurz, Dalton Trans. 2012, 41, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOisLjJ&md5=00da333268814fd8640977ea9d46f9e8CAS |
[15] M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGru7zM&md5=540cc424d400d53fa31ddfbaffecfcd3CAS |
[16] E. Abou-Hamad, Y. Kim, T. Wågberg, D. Boesch, S. Aloni, A. Zettl, et al. ACS Nano 2009, 3, 3878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhsbbF&md5=04206c30596526387237d8b56013abbaCAS |
[17] G. Z. Hu, F. Nitze, T. Barzegar, T. Sharifi, T. Wågberg, J. Mater. Chem. 2012, 22, 8541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVWru7c%3D&md5=c055616835556d9384b19b708069d5ddCAS |
[18] Y. G. Zou, B. B. Liu, L. C. Wang, D. D. Liu, S. D. Yu, P. Wang, et al. Proc. Natl. Acad. Sci. USA 2009, 106, 22135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlWkug%3D%3D&md5=51ac52a40e19951295f7d92d842d6f7cCAS |
[19] P. Matyba, K. Maturova, M. Kemerink, N. D. Robinson, L. Edman, Nat. Mater. 2009, 8, 672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr4%3D&md5=dfc422a449cf6aa9c07ccccacc63a6b9CAS |
[20] P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N. D. Robinson, ACS Nano 2010, 4, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFams7k%3D&md5=4858eba30243aa1c87da47cac2accbd2CAS |
[21] T. Wågberg, P. R. Hania, N. D. Robinson, J. H. Shin, P. Matyba, L. Edman, Adv. Mater. 2008, 20, 1744.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. Ajaikumar, J. Ahlkvist, W. Larsson, A. Shchukarev, A. R. Leino, K. Kordas, et al. Appl. Catal. A Gen. 2011, 392, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsV2jtA%3D%3D&md5=8d86d5998722b870a8b7aaa4a5281617CAS |
[23] V. Eta, P. Maki-Arvela, A. R. Leino, K. Kordas, T. Salmi, D. Y. Murzin, et al. Ind. Eng. Chem. Res. 2010, 49, 9609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qsrvN&md5=d3909366a35262a4e8c4fa804e8d5594CAS |
[24] M. C. Wu, J. Hiltunen, A. Sapi, A. Avila, W. Larsson, H. C. Liao, et al. ACS Nano 2011, 5, 5025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFCru7g%3D&md5=0103ddd3e37d2e407d651c7d4cd10c9dCAS |
[25] D. Shevela, K. Beckmann, J. Clausen, W. Junge, J. Messinger, Proc. Natl. Acad. Sci. USA 2011, 108, 3602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKltL4%3D&md5=f96fad109a7f81c7d001a3e1b27091edCAS |
[26] N. Cox, L. Rapatskiy, J.-H. Su, D. A. Pantazis, M. Sugiura, L. Kulik, et al. J. Am. Chem. Soc. 2011, 133, 3635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlams7w%3D&md5=4008aca56fbc7bf4971567c7c1df3f7aCAS |
[27] J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, et al. Science 2006, 314, 821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKit73N&md5=347b86e74bdd04fa290532ebbe2c7265CAS |
[28] M. E. Eriksson, M. Israelsson, O. Olsson, T. Moritz, Nat. Biotechnol. 2000, 18, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFCmsrc%3D&md5=d423ef3aa8c8893741a07762b01cd127CAS |
[29] T. Näsholm, A. Ekblad, A. Nordin, R. Giesler, M. Högberg, P. Högberg, Nature 1998, 392, 914.
| Crossref | GoogleScholarGoogle Scholar |
[30] G. A. Tuskan, S. DiFazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, et al. Science 2006, 313, 1596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVOktLk%3D&md5=498edddd3d38bed5ec6379b0f061c35aCAS |
[31] C. Boman, E. Pettersson, R. Westerholm, D. Boström, A. Nordin, Energy Fuels 2011, 25, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFymsQ%3D%3D&md5=7b1c8a96f1df46294bc13ea71cf2ae51CAS |
[32] E. Brus, M. Öhman, A. Nordin, Energy Fuels 2005, 19, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWmtbs%3D&md5=0d359583573e6815807d0cea8499ca70CAS |
[33] E. Natarajan, A. Nordin, A. N. Rao, Biomass Bioenergy 1998, 14, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFSrtrk%3D&md5=54a859864a2bf11890feaee3ddeed5c5CAS |
[34] A. Nordin, Biomass Bioenergy 1994, 6, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1GnsLs%3D&md5=678708e57ecce42774588c46790e80c3CAS |
[35] D. Boström, N. Skoglund, A. Grimm, C. Boman, M. Öhman, M. Broström, et al. Energy Fuels 2012, 26, 85.
| Crossref | GoogleScholarGoogle Scholar |
[36] K. Lundholm, A. Nordin, R. Backman, Fuel Process. Technol. 2007, 88, 1061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFamurvJ&md5=d4fa293df712c0a45a5f0a6cbf4bace1CAS |
[37] M. Gabra, A. Nordin, M. Öhman, B. Kjellström, Biomass Bioenergy 2001, 21, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFWgsb0%3D&md5=788539b817d1e6bfbaf7c0e688bf0d30CAS |
[38] J. Love, S. Björklund, J. Vahala, M. Hertzberg, J. Kangasjarvi, B. Sundberg, Proc. Natl. Acad. Sci. USA 2009, 106, 5984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFeiu7w%3D&md5=94f16079c2030ca9885335fdb5ee8f19CAS |
[39] M. Roach, L. Gerber, D. Sandquist, A. Gorzsás, M. Hedenström, M. Kumar, M. C. Steinhauser, R. Feil, G. Daniel, M. Stitt, B. Sundberg, T. Niittyla, Plant J. 2012,
| Crossref | GoogleScholarGoogle Scholar |
[40] I. Anugwom, P. Mäki-Arvela, P. Virtanen, P. Damlin, R. Sjoholm, J. P. Mikkola, RSC Advances 2011, 1, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hs7rO&md5=96ec24d63e73fea0c28f577432d55585CAS |
[41] H. Grenman, J. Warna, J. P. Mikkola, V. Sifontes, P. Fardim, D. Y. Murzin, et al. Ind. Eng. Chem. Res. 2010, 49, 9703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhsbzF&md5=42febf7ca471d621b17ee39836e3c111CAS |
[42] A. V. Kirilin, A. V. Tokarev, E. V. Murzina, L. M. Kustov, J. P. Mikkola, D. Y. Murzin, ChemSusChem 2010, 3, 708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFymsbg%3D&md5=72cbc5f0d81286027f6ef3ed7445f5c8CAS |
[43] E. Leino, P. Mäki-Arvela, K. Eränen, M. Tenho, D. Y. Murzin, T. Salmi, et al. Chem. Eng. J. 2011, 176–77, 124.
| Crossref | GoogleScholarGoogle Scholar |
[44] P. Mäki-Arvela, E. Salminen, T. Riittonen, P. Virtanen, N. Kumar, J.-P. Mikkola, Int. J. Chem. Eng. 2012, 674761.
| Crossref | GoogleScholarGoogle Scholar |
[45] T. Salmi, J. Wärnå, J. P. Mikkola in Chemical Reaction engineering and reactor technology 2010 (Taylor & Francis: Boca Raton).
[46] A. Cavka, B. Alriksson, M. Ahnlund, L. J. Jönsson, Biotechnol. Bioeng. 2011, 108, 2592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2js7nK&md5=77196c265d41d3138b7879699b7f8690CAS |
[47] A. Cavka, B. Alriksson, S. H. Rose, W. H. van Zyl, L. J. Jönsson, J. Ind. Microbiol. Biotechnol. 2011, 38, 891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFymsL0%3D&md5=a8fc4d5d056ece83004f75859ccc6b6fCAS |
[48] R. Chatterjee, K. Johansson, L. Jarnström, L. J. Jönsson, J. Agric. Food Chem. 2011, 59, 5390.
| 1:CAS:528:DC%2BC3MXlt1Cntrk%3D&md5=db7a4b7fea050bdd443eef7789b5b3a6CAS |
[49] V. Eta, P. Mäki-Arvela, J. Wärnå, T. Salmi, J. P. Mikkola, D. Y. Murzin, Appl. Catal. A Gen. 2011, 404, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGmt7fL&md5=f23bfc58eaedd29693e05a90f85e0d13CAS |
[50] N. Halonen, A. Sapi, L. Nagy, R. Puskas, A. R. Leino, J. Maklin, et al. Solid State Phys. 2011, 248, 2500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjt7zL&md5=802520b6869ca10faca668067bef8e38CAS |
[51] S. Hyvarinen, P. Damlin, J. Grasvik, D. Y. Murzin, J. P. Mikkola, Cell. Chem. Technol. 2011, 45, 483.
| 1:CAS:528:DC%2BC3MXhs1ansL%2FE&md5=3f2428f47e29d61600468a816463735fCAS |
[52] H. Jun, T. Kieselbach, L. J. Jönsson, Microb. Cell Fact. 2011, 10, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WrtrrI&md5=8223fb7b18ac223473844bb0743299aeCAS |
[53] T. A. Lestander, A. Lundström, M. Finell, Can. J. For. Res. 2012, 42, 59.
| Crossref | GoogleScholarGoogle Scholar |
[54] T. A. Lestander, R. Samuelsson, Energ. Fuel. 2010, 24, 5148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjsrzM&md5=5d146e66a802496cf1bb0075a1406c62CAS |
[55] V. P. Soudham, B. Alriksson, L. J. Jönsson, J. Biotechnol. 2011, 155, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVais7fL&md5=65a4e6d54c2500483667439688300060CAS |
[56] I. Bjurhager, A. M. Olsson, B. Zhang, L. Gerber, M. Kumar, L. A. Berglund, et al. Biomacromolecules 2010, 11, 2359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSju7vI&md5=f16f3e5caf6b263c4b27c3bae12cbcb4CAS |
[57] M. Hedenström, S. Wiklund-Lindström, T. Öman, F. C. Lu, L. Gerber, P. Schatz, et al. Mol. Plant 2009, 2, 933.
| Crossref | GoogleScholarGoogle Scholar |
[58] M. Mauriat, T. Moritz, Plant J. 2009, 58, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVequ7s%3D&md5=9b0af1c6c8936a680b9a2685df3e746cCAS |
[59] R. Nilsson, K. Bernfur, N. Gustavsson, J. Bygdell, G. Wingsle, C. Larsson, Mol. Cell. Proteomics 2010, 9, 368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWhtrw%3D&md5=1f7ac4a13876c0a6c207bb8d817bc00aCAS |
[60] A. M. Olsson, I. Bjurhager, L. Gerber, B. Sundberg, L. Salmen, Planta 2011, 233, 1277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGgtbo%3D&md5=9df9c282c90c724b16fc012f6705f701CAS |
[61] E. Pesquet, H. Tuominen, New Phytol. 2011, 190, 138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktleltLs%3D&md5=59bd857e30cfcfcaf86311705b6f5f0eCAS |
[62] R. C. Pinto, H. Stenlund, M. Hertzberg, T. Lundstedt, E. Johansson, J. Trygg, Anal. Chim. Acta 2011, 685, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mtLnP&md5=e781722951b454b86fede62587c0493eCAS |
[63] A. M. Wu, C. Rihouey, M. Seveno, E. Hornblad, S. K. Singh, T. Matsunaga, et al. Plant J. 2009, 57, 718.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFGhsbk%3D&md5=3b499141b66c48970f4ab6a1be7a8dffCAS |
[64] J. Onskog, E. Freyhult, M. Landfors, P. Ryden, T. R. Hvidsten, BMC Bioinformatics 2011, 12, 390.
| Crossref | GoogleScholarGoogle Scholar |
[65] N. Street, S. Jansson, T. R. Hvidsten, BMC Plant Biol. 2011, 11, 13.
[66] K. Beckmann, H. Uchtenhagen, G. Berggren, M. F. Anderlund, A. Thapper, J. Messinger, S. Styring, P. Kurz, Energy Environ. Sci. 2008, 1, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFWkt7w%3D&md5=799ebbf1e2de5ff525d34d6975a19a9aCAS |