Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis*
Ann Magnuson A B and Stenbjörn Styring AA Department of Chemistry – Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
B Corresponding author. Email: ann.magnuson@kemi.uu.se
Ann Magnuson has a PhD in biochemistry from Lund University and is Associate Professor at Uppsala University. Her research includes manganese- and ruthenium-manganese complexes aimed at artificial photosynthesis, as well as the photosynthetic enzymes of nitrogen fixing cyanobacteria. |
Stenbjörn Styring took his PhD in biochemistry at Göteborg University, and is chair Professor in Molecular Biomimetics at Uppsala University. His research concerns the water oxidizing enzyme Photosystem II, as well as development of solar fuels using synthetic manganese-, cobalt- and ruthenium-manganese complexes for artificial photosynthetic oxidation of water. |
Australian Journal of Chemistry 65(6) 564-572 https://doi.org/10.1071/CH12114
Submitted: 24 February 2012 Accepted: 10 April 2012 Published: 21 June 2012
Abstract
The world needs new, environmentally friendly, and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap, abundant, and renewable resources. The research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel, and proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis is expanding rapidly and most of the different scientific visions for solar fuels are briefly reviewed. Research strategies for the development of artificial photosynthesis to produce solar fuels are overviewed, with some critical concepts discussed in closer detail.
References
[1] World Energy Outlook, OECD/IEA, 2010.[2] BP Statistical Review of World Energy June 2011.
[3] IPCC 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland.
[4] A. Kraytsberg, Y. Ein-Eli, J. Power Sources 2011, 196, 886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGnurbK&md5=0eab0066a06bbc873762a5e06ed4a25bCAS |
[5] K. Sakai, H. Ozawa, Coord. Chem. Rev. 2007, 251, 2753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhs7zP&md5=436f7d68437e8d4a5220447da195d3a6CAS |
[6] D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström, S. Ott, Chemistry 2010, 16, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksLfE&md5=a09f7bb27baace7f6f71bc824a940a03CAS |
[7] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. Pijpers, D. G. Nocera, Science 2011, 334, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vF&md5=e0298161b92e218b9b45c56538dc6eb5CAS |
[8] K. Maeda, K. Domen, J. Phys. Chem. C 2007, 111, 7851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Whs78%3D&md5=ae798c23361fda4ba34dab57719f5196CAS |
[9] The World Bank Energy and mining dataset. (URL: http://data.worldbank.org/topic/energy-and-mining).
[10] A. Yella, H.-W. Lee, H.-N. Tsao, C. Yi, A. Kumar, M. K. Nazeeruddin, E. W. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=e133a1a57aae1b4de8c382af9246514dCAS |
[11] Artificial photosynthesis and solar fuels. Guest editors L. Hammarström, S. Hammes-Schiffer. Special issue of Acc. Chem. Res. 2009, 42, 1859.
[12] Renewable Energy. Guest editors D. G. Nocera, D. Guldi. Chem. Soc. Rev. 2009, 38, 1.
[13] Solar Energy Conversion. Guest editor Villy Sundström. Themed issue of Dalton Trans. 2009, 45, 9937.
[14] M. R. Wasielewski, Chem. Rev. 1992, 92, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFWju70%3D&md5=9337a6bd5066293299e7ee33fe8ae289CAS |
[15] A. Magnuson, M. F. Anderlund, O. Johansson, P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styring, V. Sundström, L. Hammarström, Acc. Chem. Res. 2009, 42, 1899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjt73P&md5=fa7bfd74288e73c5494e279d8e97f50dCAS |
[16] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrtrnN&md5=31f8f2b6799f2b3c146caed304bb4212CAS |
[17] S. Ott, S. Styring, L. Hammarström, O. Johansson, Towards Solar Fuels using a biomimetic Approach. Progress in the Swedish Consortium for Artificial Photosynthesis. In Energy production and storage 2010 (Ed. R. Crabtree), Chichester, UK: John Wiley & Sons, Ltd, pp. 199–227.
[18] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lsb3I&md5=438de29bdee38432d249bcc4efea7a26CAS |
[19] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lsbvF&md5=51671dca2cc6d1811c23ea04b8c22579CAS |
[20] X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lsbvE&md5=2b4147810dfb82f62fbd028c1e75ad5aCAS |
[21] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=4d554995a8442318e37fd3fd4f64344fCAS |
[22] M. R. Dubois, D. L. Dubois, Chem. Soc. Rev. 2009, 38, 62.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Risch, V. Khare, I. Zaharieva, L. Gerencser, P. Chernev, H. Dau, J. Am. Chem. Soc. 2009, 131, 6936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCnsr8%3D&md5=ea2d468c983f5932657a7baf16a96aefCAS |
[24] Energy Biotechnology. Guest editors P. Lindblad, T. Jeffries. Opin. Biotech. 2009, 20, 318.
[25] O. Kruse, B. Hankamer, Curr. Opin. Biotechnol. 2010, 21, 238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOhtr0%3D&md5=3baada305c88c3538bfb51c9fad52dbdCAS |
[26] A. Hemschemeier, T. Happe, BBA–Bioenergetics 2011, 1807, 919.
| 1:CAS:528:DC%2BC3MXntVylsbs%3D&md5=f5e984fccb0942987f3501d981c148bdCAS |
[27] A. Melis, L. P. Zhang, M. Forestier, M. L. Girardi, M. Seibert, Plant Physiol. 2000, 122, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFamsw%3D%3D&md5=082fe288bfd2e13248aef04c7efa9708CAS |
[28] A. A. Tsygankov, A. S. Fedorov, S. N. Kosourov, K. K. Rao, Biotechnol. Bioeng. 2002, 80, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlaltLY%3D&md5=f3066d3054b4adb40054631bbcdf5694CAS |
[29] D. F. Savage, J. Way, P. A. Silver, ACS Chem. Biol. 2008, 3, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKktw%3D%3D&md5=c0e2bdc3c87ecee5315e48a5b4f19ffcCAS |
[30] D. C. Ducat, G. Sachdeva, P. A. Silver, Proc. Natl. Acad. Sci. USA 2011, 108, 3941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1WqtrY%3D&md5=a226ffa6d30d93861949f3452073d00fCAS |
[31] A. S. Khalil, J. J. Collins, Nat. Rev. Genet. 2010, 11, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVSqs78%3D&md5=f84e970c41f5ca36b52392dca3e56412CAS |
[32] W. Baebprasert, S. Jantaro, W. Khetkorn, P. Lindblad, A. Incharoensakdi, Metab. Eng. 2011, 13, 610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2itbzN&md5=6be13140ad371a34961ecec40ffed807CAS |
[33] N. Nelson, C. F. Yocum, Annu. Rev. Plant Biol. 2006, 57, 521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKht7w%3D&md5=5f914926595315fa795e5b2165307b4eCAS |
[34] Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Nature 2011, 473, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmtLg%3D&md5=f7b48594fae4a870a2b3d1c7ed10df43CAS |
[35] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVWmtrw%3D&md5=3d584d87269cb9174ee404f201709a99CAS |
[36] V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCqur0%3D&md5=2ed3d57962788a29debc1b2ee9348bfeCAS |
[37] L. C. Sun, L. Hammarström, B. Åkermark, S. Styring, Chem. Soc. Rev. 2001, 30, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Ojug%3D%3D&md5=ece2d0306c3852ac95fa42d837e69581CAS |
[38] M. Borgström, N. Shaikh, O. Johansson, M. F. Anderlund, S. Styring, B. Åkermark, A. Magnuson, L. Hammarström, J. Am. Chem. Soc. 2005, 127, 17504.
| Crossref | GoogleScholarGoogle Scholar |
[39] M. Haumann, P. Liebisch, C. Muller, M. Barra, M. Grabolle, H. Dau, Science 2005, 310, 1019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2is7nI&md5=f4bbd9425797009c30e0b94189f8e788CAS |
[40] J. Limburg, J. S. Vrettos, H. Y. Chen, J. C. de Paula, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2001, 123, 423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVyjs7Y%3D&md5=0d642ccbab22d02ffc48b8bb26f5b005CAS |
[41] K. Beckmann, H. Uchtenhagen, G. Berggren, M. F. Anderlund, A. Thapper, J. Messinger, S. Styring, P. Kurz, Energ. Environ. Sci. 2008, 1, 668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFWkt7w%3D&md5=799ebbf1e2de5ff525d34d6975a19a9aCAS |
[42] S. Mukherjee, J. A. Stull, J. Yano, T. C. Stamatatos, K. Pringouri, T. A. Stich, K. A. Abboud, R. D. Britt, V. K. Yachandra, G. Christou, Proc. Natl. Acad. Sci. USA 2012, 109, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFSjsr8%3D&md5=4cfa76569ebed1eafcb3ee4c3ea0772cCAS |
[43] M. Wiechen, H.-M. Berends, P. Kurz, Dalton Trans. 2011, 41, 21.
| Crossref | GoogleScholarGoogle Scholar |
[44] Q. Yin, J-M. Tan, C. Besson, Y. V. Geletti, D. G Musaev, A. E. Kuznetsov Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Sgtbs%3D&md5=31262becc276064b39f67eb7a54d16e6CAS |
[45] D. Shevchenko, M. F. Anderlund, A. Thapper, S. Styring, Energ. Environ. Sci. 2011, 4, 1284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1WitL0%3D&md5=20c888727643d05ce81bdd0b4e17a0c7CAS |
[46] J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVahs77P&md5=303d63d738e6e35028da0c86d4962c56CAS |
[47] K. A. Vincent, A. Parkin, F. A. Armstrong, Chem. Rev. 2007, 107, 4366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWis7bL&md5=da64ae221be8103275698accb9afd3cfCAS |
[48] A. L. Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384.
| Crossref | GoogleScholarGoogle Scholar |
[49] B. E. Barton, M. T. Olsen, T. B. Rauchfuss, Curr. Opin. Biotechnol. 2010, 21, 292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOht78%3D&md5=ccb3c257441125a798ac8a68bc436211CAS |
[50] L. L. Duan, Y. H. Xu, P. Zhang, M. Wang, L. C. Sun, Inorg. Chem. 2010, 49, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaks7fJ&md5=cd878c696865f4d3a6bcdfb2758d5a51CAS |
[51] J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res. 2009, 42, 1954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cju7%2FE&md5=0ab3a31f38699703109e991f1259ecc2CAS |
[52] T. Hisatomi, J. Brillet, M. Cornuz, F. Le Formal, N. Tétreault, K. Sivula, M. Grätzel, Faraday Discuss. 2012, 155, in press
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1emu78%3D&md5=39d2f1c92fbe485ff26b6ebe9709f354CAS |