The Challenge of Storage in the Hydrogen Energy Cycle: Nanostructured Hydrides as a Potential Solution
James M. Hanlon A , Hazel Reardon A , Nuria Tapia-Ruiz A and Duncan H. Gregory A BA WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
B Corresponding author. Email: duncan.gregory@glasgow.ac.uk
James M. Hanlon graduated from the University of Glasgow in 2005 with a B.Sc. (Hons) in chemistry with medicinal chemistry. He then returned to the University of Glasgow in 2008 to undertake a Ph.D. with Professor Duncan H. Gregory on hydrogen storage materials under the ESPRC SUPERGEN program. His research interests include nanostructured hydrogen storage materials, hydrogen release systems, and ammonia storage materials. |
Hazel Reardon graduated from the University of Strathclyde with an M.Sc. in analytical chemistry in 2008. She then took up a position as a technical specialist in industry whilst undertaking a Royal Society of Chemistry accredited graduate program. In 2010, she began a Ph.D. at the University of Glasgow with Professor Duncan H. Gregory on the development of hydrogen storage materials. Her research interests are focused on new materials for modern energy and fuel solutions. |
Nuria Tapia-Ruiz graduated from the University of Barcelona with an honours degree in inorganic chemistry in 2009. She then moved to the University of Glasgow where she is currently studying for a Ph.D. in materials chemistry under the supervision of Professor Duncan H. Gregory. Her research interests are focused on developing new routes for the synthesis of nitrides with potential applications as energy storage materials. |
Duncan H. Gregory studied at the University of Southampton, completing his Ph.D. in 1993 under Professor Mark Weller. He was an EPSRC Advanced Fellow, Lecturer and Reader in Materials Chemistry at the University of Nottingham until 2006. He then took up the WestCHEM Chair in Inorganic Materials at the University of Glasgow and is Head of Inorganic Chemistry. His research interests centre on materials with potential applications in areas including sustainable energy. |
Australian Journal of Chemistry 65(6) 656-671 https://doi.org/10.1071/CH11437
Submitted: 16 November 2011 Accepted: 30 December 2011 Published: 20 February 2012
Abstract
Hydrogen has the capacity to provide society with the means to carry ‘green’ energy between the point of generation and the point of use. A sustainable energy society in which a hydrogen economy predominates will require renewable generation provided, for example, by artificial photosynthesis and clean, efficient energy conversion effected, for example, by hydrogen fuel cells. Vital in the hydrogen cycle is the ability to store hydrogen safely and effectively. Solid-state storage in hydrides enables this but no material yet satisfies all the demands associated with storage density and hydrogen release and uptake; particularly for mobile power. Nanochemical design methods present potential routes to overcome the thermodynamic and kinetic hurdles associated with solid state storage in hydrides. In this review we discuss strategies of nanosizing, nanoconfinement, morphological/dimensional control, and application of nanoadditives on the hydrogen storage performance of metal hydrides. We present recent examples of how such approaches can begin to address the challenges and an evaluation of prospects for further development.
References
[1] J. Barber, Chem. Soc. Rev. 2008, 38, 185.| Crossref | GoogleScholarGoogle Scholar |
[2] N. D. McDaniel, S. Bernhard, Dalton Trans. 2010, 39, 10021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSmsrrE&md5=14f930821cac3b8289bc7d54a3779504CAS |
[3] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrtrnN&md5=31f8f2b6799f2b3c146caed304bb4212CAS |
[4] K. Kalyanasundaram, M. Graetz, Curr. Opin. Biotechnol. 2010, 21, 298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOht7w%3D&md5=0331f6b70ac7084cd92b8e321d959002CAS |
[5] (a) D. H. Gregory, J. Mater. Chem. 2008, 18, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOnsbk%3D&md5=f623028c8ecdfbe15f293672b10f9bb1CAS |
(b) T. K. Mandal, D. H. Gregory, Ann. Rep. Prog. Chem. Sect. A: Inorg. Chem. 2009, 105, 21.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. K. Mandal, D. H. Gregory, Proc. IMechE, Part C: J. Mech. Eng. Sci. 2010, 224(C3), 539.J. M. Cameron, R. W. Hughes, Y. Zhao, D. H. Gregory, Chem. Soc. Rev. 2011, 40, 4099.
[6] A. W. C. Van den Berg, C. O. Arèan, Chem. Commun. 2008, 668.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem. Rev. 2007, 107, 4111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVahsrbL&md5=69a6d615e973bb9760abe30b89c67dc8CAS |
[8] R. Schulz, J. Huot, G. Liang, S. Boily, G. Lalande, M. C. Denis, J. P. Dodelet, Mater. Sci. Eng. 1999, A267, 240.
| 1:CAS:528:DyaK1MXjslKit7c%3D&md5=ba57edb127cc7429eb5729c2faacbe98CAS |
[9] K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Energy Environ. Sci. 2010, 3, 526.
| 1:CAS:528:DC%2BC3cXnvVait7g%3D&md5=76d55ab049a4c6b98ad95e1ffbfcdc9dCAS |
[10] P. E. de Jongh, P. Adelhelm, ChemSusChem 2010, 3, 1332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCkt77M&md5=f34ec3a7f8d7f065ad0a9e8660750d19CAS |
[11] T. K. Nielsen, F. Besenbacher, T. R. Jensen, Nanoscale 2011, 3, 2086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yhtrw%3D&md5=9167774b92abbf88c84c9efd5a53a6e6CAS |
[12] C. J. Liu, L. Burghaus, F. Besenbacher, Z. L. Wang, ACS Nano 2010, 4, 5517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWitbbJ&md5=854413399e2116c4658556efa3a08f88CAS |
[13] B. Peng, J. Liang, Z. Tao, J. Chen, J. Mater. Chem. 2009, 19, 2877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls12is7Y%3D&md5=5d1fa63cb96415e54c48b904ddd3503eCAS |
[14] A. L. Ortiz, W. Osborn, T. Markmaitree, L. L. Shaw, J. Alloy. Comp. 2008, 454, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12msbo%3D&md5=19d5ea0fbd30d0e285969b49d22eb79fCAS |
[15] S. Gautam, K. Dharamvir, N. Goel, J. Phys. Chem. A 2011, 115, 6383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOntbo%3D&md5=06a27ac5ac34a2b834e0ac76b51f7da0CAS |
[16] S. Hao, D. S. Sholl, J. Phys. Chem. Lett. 2010, 1, 2968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygt7%2FJ&md5=91bfcfab75fb4e053e1960492a932ea8CAS |
[17] C. Pistidda, S. Garroni, C. B. Minella, F. Dolci, T. R. Jensen, P. Nolis, U. Bösenberg, Y. Cerenius, W. Lohstroh, M. Fichtner, M. D. Baró, R. Bormann, M. Dornheim, J. Phys. Chem. C 2010, 114, 21816.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVais7bF&md5=395daddf9c37d866dc228d579ac255feCAS |
[18] M. Gonzalez-Silveira, R. Gremaud, H. Schreuders, M. J. van Setten, E. Batyrev, A. Rougier, L. Dupont, E. G. Bardají, W. Lohstroh, B. Dam, J. Phys. Chem. C 2010, 114, 13895.
| 1:CAS:528:DC%2BC3cXptFyjtbk%3D&md5=5540fad317d6edd942630689752f7282CAS |
[19] J. L. Maienschein, J. S. Bowers, J. S. Cantrell, T. A. Beiter, J. Alloy. Comp. 1992, 179, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVGjt70%3D&md5=dc8fa1517b10bd7df437cc72a9ffb547CAS |
[20] A. Zaluska, L. Zaluski, J. O. Strö-Olsen, J. Alloy. Comp. 2000, 307, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFOls7k%3D&md5=b7d95f45cab66310f89476c71ec31da0CAS |
[21] P. J. Herley, W. Jones, B. Vigeholm, J. Appl. Phys. 1985, 58, 292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksVSqtLs%3D&md5=fdc8c88e6fd27103dc50e1906feeac6eCAS |
[22] C. Zhu, S. Hosokai, I. Matsumoto, T. Akiyama, Cryst. Growth Des. 2010, 10, 5123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleiur3N&md5=1cb4bc229de4a6af7ea4b87f5c32bf47CAS |
[23] C. Zhu, S. Hosokai, T. Akiyama, Cryst. Growth Des. 2011, 11, 4166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOhur8%3D&md5=e53331718066d1d7262c29954eeefb03CAS |
[24] C. Milanese, A. Girella, S. Garroni, G. Bruni, V. Berbenni, P. Matteazzi, A. Marini, Int. J. Hydrogen Energy 2010, 35, 9027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrurzM&md5=ba25e37a99226a071a3549df6386dbacCAS |
[25] D. A. Sheppard, M. Paskevicius, C. E. Buckley, J. Alloy. Comp. 2010, 492, L72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Crtb8%3D&md5=3e7562906f1f30ba9ce4899653e3d9acCAS |
[26] M. Paskevicius, D. A. Sheppard, C. E. Buckley, J. Am. Chem. Soc. 2010, 132, 5077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Crsbg%3D&md5=e86b3072c7dcf5776062042f7d57dd1cCAS |
[27] K.-J. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J. J. Urban, Nat. Mater. 2011, 10, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVGjtbw%3D&md5=ae2d2ca937b232c5745c25a804c31bc2CAS |
[28] P. E. de Jongh, R. P. Wagemans, T. M. Eggenhuisen, B. S. Dauvillier, P. B. Radstake, J. D. Meeldijk, J. W. Geus, K. P. de Jong, Chem. Mater. 2007, 19, 6052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aitrvF&md5=6596db9ef4fec60bdc0304c3cf1cd030CAS |
[29] A. Khandelwal, F. Agresti, G. Capurso, S. L. Russo, A. Maddalena, S. Gialanella, G. Principi, Int. J. Hydrogen Energy 2010, 35, 3565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlShsrY%3D&md5=7553c94e0d63b74a35731ec28580ba27CAS |
[30] M. Paskevicius, H.-Y. Tian, D. A. Sheppard, C. J. Webb, M. P. Pitt, E. MacA. Gray, N. M. Kirby, C. E. Buckley, J. Phys. Chem. C 2011, 115, 1757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2qug%3D%3D&md5=37dcf8b4c2cf3f9305d7d3ec6d82a603CAS |
[31] E. Wiberg, R. Bauer, Z. Naturforsch. B 1950, 5b, 396.
| 1:CAS:528:DyaG3MXis1CksA%3D%3D&md5=19449090b6ebfc5304d508564c931ae9CAS |
[32] T. P. Burns, R. D. Rieke, J. Org. Chem. 1987, 52, 3674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFelsL0%3D&md5=fba82d8e48d24a7e512ca466c0e8cfbaCAS |
[33] I. Haas, A. Gedanken, Chem. Commun. 2008, 1795.
| 1:CAS:528:DC%2BD1cXktVCitL8%3D&md5=ff311c44c42c2b3c8ded4e0e85834982CAS |
[34] K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Chem. Mater. 2008, 20, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOntbbL&md5=9978bbf872f2117ac4cd28321b0d542cCAS |
[35] S. B. Kalidindi, B. R. Jagirdar, Inorg. Chem. 2009, 48, 4524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvF2gtrk%3D&md5=9962e4e63a3c6b54a42ce2faa2b49d7dCAS |
[36] E. C. Ashby, R. D. Schwartz, Inorg. Chem. 1971, 10, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXmtVarsA%3D%3D&md5=acb39c0e70b69cbd36532f0a977d8cdfCAS |
[37] N. S. Norberg, T. S. Arthur, S. J. Fredrick, A. L. Prieto, J. Am. Chem. Soc. 2011, 133, 10679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFagur4%3D&md5=e88a6e1965a2e7c02f83875e3cf15196CAS |
[38] D. K. Dixit, K. Gandhi, B. K. Dixit, Int. J. Hydrogen Energy 2011,
| Crossref | GoogleScholarGoogle Scholar |
[39] H. Lee, J. Ihm, M. L. Cohen, S. G. Louie, Nano Lett. 2010, 10, 793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFansLs%3D&md5=cd7faf9e063180a98e06109bdc90b74bCAS |
[40] H. Wu, W. Zhou, T. J. Udovic, J. J. Rush, T. Yildrim, Chem. Mater. 2008, 20, 2335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVamtr8%3D&md5=9a947b5447ccae15289e170d23a07d83CAS |
[41] D. A. Sheppard, M. Paskevicius, C. E. Buckley, Chem. Mater. 2011, 23, 4298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOit7zN&md5=aee8c526e81ccdfbd2ce241c483f8befCAS |
[42] A.-H. Lu, F. Schüth, Adv. Mater. 2006, 18, 1793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktr0%3D&md5=87a446921092307e3443b4c9ef3e3ee5CAS |
[43] J. J. Vajo, Curr. Opin. Solid State Mater. Sci. 2011, 15, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKmt78%3D&md5=eb2cd39f38077d7c2710bb658aa8fcfeCAS |
[44] H. Y. Tian, C. E. Buckley, M. Paskevicius, D. A. Sheppard, Int. J. Hydrogen Energy 2011, 36, 671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gjt7o%3D&md5=8e5989b136cc54191967920c2766b23cCAS |
[45] H.-W. Li, Y. Yan, S. Orimo, A. Züttel, C. M. Jensen, Energies 2011, 4, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslals74%3D&md5=f0ce2bb531aa9c2e17b5eb621935c4b7CAS |
[46] E. Rönnebro, Curr. Opin. Solid State Mater. Sci. 2011, 15, 44.
| Crossref | GoogleScholarGoogle Scholar |
[47] A. J. Churchard, E. Banch, A. Borgschulte, A. J. Churchard, E. Banch, A. Borgschulte, Phys. Chem. Chem. Phys. 2011, 13, 16955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Slt7rF&md5=e106ae9c7f4931324370747f7d24dc8fCAS |
[48] E. M. Fedneva, V. L. Alpatova, V. I. Mikheeva, Russ. J. Inorg. Chem. 1964, 9, 826.
[49] P. Mauron, F. Buchter, O. Friederichs, A. Remhof, M. Bielmann, C. N. Zwicky, A. Züttel, J. Phys. Chem. B 2008, 112, 906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVemtrvM&md5=0b155892c15f4f186f407aab0f0767a1CAS |
[50] J. J. Vajo, S. L. Skeith, J. Phys. Chem. B 2005, 109, 3719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqu7s%3D&md5=24592414c13b4c18247e5a7d50ab73c6CAS |
[51] B. J. Zhang, B. H. Liu, Z. P. Li, J. Alloy. Comp. 2011, 509, 751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCktbnP&md5=49b95eb6d364d5dd4fa44a7bc03b735fCAS |
[52] S. Barcelo, S. S. Mao, Int. J. Hydrogen Energy 2010, 35, 7228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1ygsLs%3D&md5=5d6ac476c25da2c2b223d22ef2ea7b0bCAS |
[53] R. A. Varin, L. Zbroniec, Int. J. Hydrogen Energy 2010, 35, 3588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlShs7w%3D&md5=5146efe4f3ddb227823e1bc46128cdc7CAS |
[54] Y. H. Guo, X. B. Yu, L. Gao, G. L. Xia, Z. P. Guo, H. K. Liu, Energy. Environ. Sci. 2010, 3, 465.
| 1:CAS:528:DC%2BC3cXnvVahsr4%3D&md5=594aaa24f458aeedc266e6bb96294106CAS |
[55] D. Blanchard, Q. Shi, C. B. Boothroyd, T. Vegge, J. Phys. Chem. C 2009, 113, 14059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVejt74%3D&md5=13bc00ff8afa58637b5407786c62e9a8CAS |
[56] R. J. Newhouse, V. Stavila, S. J. Hwang, L. E. Klebanoff, J. Z. Zhang, J. Phys. Chem. C 2010, 114, 5224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVaisbs%3D&md5=8c33c9f2d3295a5070f063fe46c95279CAS |
[57] A. F. Gross, J. J. Vago, S. L. Van Atta, G. L. Olson, J. Phys. Chem. C 2008, 112, 5651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOisbw%3D&md5=b26646171e4a0c70b61961c34d744ed9CAS |
[58] S. Cahen, J.-B. Eymery, R. Janot, J.-M. Tarascon, J. Power Sources 2009, 189, 902.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVChtb0%3D&md5=b92819f9351af145ef0d2caac974d5f0CAS |
[59] X. Liu, D. Peaslee, C. Z. Jost, E. H. Majzoub, J. Phys. Chem. C 2010, 114, 14036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWhu7o%3D&md5=678c8706e8a42ae2c87ccaf218c18a16CAS |
[60] X. Liu, D. Peaslee, C. Z. Jost, T. F. Baumann, E. H. Majzoub, Chem. Mater. 2011, 23, 1331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aiu7k%3D&md5=d4ff39c2e8f430ed7de7b4aa1ed9fc47CAS |
[61] P. Ngene, M. van Zwienen, P. E. de Jongh, Chem. Commun. 2010, 46, 8201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlentbfJ&md5=e26dca95e4e674c9df20156b895bdeb0CAS |
[62] M. Fichtner, Z. Zhao-Karger, J. Hu, A. Roth, P. Weider, Nanotechnology 2009, 20, 204029.
| Crossref | GoogleScholarGoogle Scholar |
[63] S. Sartori, K. D. Knudsen, Z. Zhao-Karger, E. G. Bardaji, J. Muller, M. Fichtner, B. C. Hauback, J. Phys. Chem. C 2010, 114, 18785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qt77I&md5=b87f7cf0bd0d100eadb4ae7d5a0de0a4CAS |
[64] P. Ngene, P. Adelhelm, A. M. Beale, K. P. de Jong, P. E. de Jongh, J. Phys. Chem. C 2010, 114, 6163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajt7g%3D&md5=ff624f8adef699387ed7204feb4866e3CAS |
[65] S. M. Opalka, X. Tang, B. L. Laube, T. H. Vanserspurt, Nanotechnology 2009, 20, 204024.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mzis1KmsQ%3D%3D&md5=addff651d4ad2b210048aa42230125d8CAS |
[66] B. Bogdanović, M. Shwickardi, J. Alloy. Comp. 1997, 1, 253.
[67] T. Vegge, Phys. Chem. Chem. Phys. 2006, 8, 4853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWnsbrI&md5=56fbb9aef124fe3a7f45c285a3d50397CAS |
[68] M. Fichtner, P. Canton, O. Kircher, A. Lèon, J. Alloy. Comp. 2005, 404–406, 732.
| Crossref | GoogleScholarGoogle Scholar |
[69] G. J. Lee, J. H. Shim, Y. W. Cho, K. S. Lee, Int. J. Hydrogen Energy 2008, 33, 3748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovF2gsbw%3D&md5=126a66a91ff4bc6ccdc10e4bce13f26eCAS |
[70] Z. Xueping, F. Xin, L. Shenglin, J. Alloy. Comp. 2011, 509, 5873.
| Crossref | GoogleScholarGoogle Scholar |
[71] X. Xiao, K. Yu, X. Fan, Z. Wu, X. Wang, C. Chen, Q. Wang, L. Chen, Int. J. Hydrogen Energy 2011, 36, 539.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gjsbg%3D&md5=a5674bb3137c12132b33db6eaaae19bfCAS |
[72] V. Iosub, T. Matsunaga, K. Tange, M. Ishikiriyama, Int. J. Hydrogen Energy 2009, 34, 906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGjt7s%3D&md5=76a6745bb6330870b5468d2c0565f48fCAS |
[73] R. A. Varin, C. Chiu, T. Czujko, Z. Wronski, Nanotechnology 2005, 16, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CiurvK&md5=3b2f4744f56325457207622890251322CAS |
[74] R. A. Varin, C. Chiu, T. Czujko, Z. Wronski, J. Alloy. Comp. 2007, 439, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslOks7s%3D&md5=d76dce1e37725cd69a372bcb9d8fafceCAS |
[75] F. E. Pinkerton, J. Alloy. Comp. 2011, 509, 8958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaju7vO&md5=5e39d6b09232af508336d9410e8a8693CAS |
[76] R. D. Stephens, A. F. Gross, S. L. Van Atta, J. J. Vajo, F. E. Pinkerton, Nanotechnology 2009, 20, 204018.
| Crossref | GoogleScholarGoogle Scholar |
[77] T. K. Nielsen, M. Polanski, D. Zasad, P. Javadian, F. Besenbacher, J. Bystrzycki, J. Skibsted, T. R. Jensen, ACS Nano 2011, 5, 4056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Wntr8%3D&md5=5fa1cfd8a3c017014433694a473e17b7CAS |
[78] J. Gao, P. Adelhelm, M. H. W. Verkeuijlen, C. Rongeat, M. Herrich, P. J. M. van Bentum, O. Gutfleisch, A. P. M. Kentgens, K. P. de Jong, P. E. de Jongh, J. Phys. Chem. C 2010, 114, 4675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Oiu7s%3D&md5=e740cd7d3426ba819c8f615f0aad934cCAS |
[79] Y. Li, G. Zhou, F. Fang, X. Yu, Q. Zhang, L. Ouyang, M. Zhu, D. Sun, Acta Mater. 2011, 59, 1829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKksg%3D%3D&md5=b88d8550e7c4a3b93042355e3f556dd6CAS |
[80] C. P. Baldé, B. P. C. Hereijgers, J. H. Bitter, K. P. de Jong, J. Am. Chem. Soc. 2008, 130, 6761.
| Crossref | GoogleScholarGoogle Scholar |
[81] S. Zheng, F. Fang, G. Zhou, G. Chen, L. Ouyang, M. Zhu, D. Sun, Chem. Mater. 2008, 20, 3954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVOgtLg%3D&md5=a20ce850fd2241a76b9c7aba43062b5cCAS |
[82] P. Chen, Z. Xiong, J. Luo, J. Lin, K. L. Tan, Nature 2002, 420, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVektLg%3D&md5=97510779490575bca11081d4eb3b78ecCAS |
[83] D. H. Gregory, J. Mater. Chem. 2008, 18, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOnsbk%3D&md5=f623028c8ecdfbe15f293672b10f9bb1CAS |
[84] P. Chen, M. Zhu, Mater. Today 2008, 11, 36.
| Crossref | GoogleScholarGoogle Scholar |
[85] http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/freedomcar_targets_explanations.pdf (accessed 15 December 2011).
[86] F. E. Pinkerton, J. Alloy. Comp. 2005, 400, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVWqtbc%3D&md5=f2720c5f9b3cb947b91c0a2096e80eebCAS |
[87] T. Markmaitree, R. Ren, L. L. Shaw, J. Phys. Chem. B 2006, 110, 20710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCqsr0%3D&md5=12aba3b2a20b0cca495cf24bd5b71901CAS |
[88] C. Lu, J. Hu, J. Kwak, Z. Yang, R. Ren, T. Markmaitree, L. Shaw, J. Power Sources 2007, 170, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Grtbw%3D&md5=aae8e7bcca3c7e14609e7b4b455c47bfCAS |
[89] L. L. Shaw, R. Ren, T. Markmaitree, W. Osborn, J. Alloy. Comp. 2008, 448, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ylsrrM&md5=667da5d16d05498d1f33532b95a7aa41CAS |
[90] R. A. Varin, M. Jang, M. Polanski, J. Alloy. Comp. 2010, 491, 658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFejsLc%3D&md5=9c56d7d950fe456a25d358b1b0149168CAS |
[91] R. R. Shahi, T. P. Yadav, M. A. Shaz, O. N. Srivastava, Int. J. Hydrogen Energy 2008, 33, 6188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gurrM&md5=1021cf39dc1c905681d720cf18928a4eCAS |
[92] T. Ichikawa, I. Shigehito, N. Hanada, H. Fujii, J. Alloy. Comp. 2004, 365, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVWjtw%3D%3D&md5=c43a348261e1856e4761272c85cce477CAS |
[93] D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby, Mater. Sci. Eng. 2004, 108, 54.
| Crossref | GoogleScholarGoogle Scholar |
[94] Z. Xueping, L. Shenglin, J. Alloy. Comp. 2009, 481, 761.
| Crossref | GoogleScholarGoogle Scholar |
[95] S. Isobe, T. Ichikawa, N. Hanada, H. Y. Leng, M. Fichtner, O. Fuhr, H. Fujii, J. Alloy. Comp. 2005, 404–406, 439.
| Crossref | GoogleScholarGoogle Scholar |
[96] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, Nanotechnology 2003, 14, 778.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVOnsrg%3D&md5=6fe3f384b6d14aaa0fa963243bbf62eaCAS |
[97] M. Matsumoto, T. Haga, Y. Kawai, Y. Kojima, J. Alloy. Comp. 2007, 439, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslOksLg%3D&md5=270b89cff836adbc883ee56297d6faedCAS |
[98] S. Isobe, T. Ichikawa, Y. Kojima, H. Fujii, J. Alloy. Comp. 2007, 360, 446.
[99] T. Tsumuraya, T. Shishidou, T. Oguchi, Phys. Rev. B 2008, 77, 235114.
| Crossref | GoogleScholarGoogle Scholar |
[100] Y. Kojima, M. Matsumoto, Y. Kawai, T. Haga, N. Ohba, K. Miwa, S. Towata, Y. Nakamori, S. Orimo, J. Phys. Chem. B 2006, 110, 9632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslSlsrk%3D&md5=f6deb0203ff3db68a8112d3614407e43CAS |
[101] F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, J. Alloy. Comp. 2007, 433, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFGmsrw%3D&md5=b77cd5412ad8f10f172e3efe9876fa30CAS |
[102] Z. Xiong, G. Wu, J. Hu, P. Chen, Adv. Mater. 2004, 16, 1522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVymtrk%3D&md5=cc30ec8511b7a97fc5decee330758fbcCAS |
[103] Y. Chen, P. Wang, C. Liu, H. Cheng, Int. J. Hydrogen Energy 2007, 32, 1262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvValtrs%3D&md5=73246f3ce3b757c32ed7f6bfc93ab7baCAS |
[104] S. Nayebossadri, K. F. Aguey-Zinsou, Z. Xiao, Int. J. Hydrogen Energy 2011, 36, 7920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslSmtL4%3D&md5=e08c28325c8bcf2d7d492f923a35f61dCAS |
[105] X. Feng, Y. Bai, B. Lu, C. Wang, Y. Qi, Y. Liu, G. Geng, L. Li, Inorg. Chem. 2004, 43, 3558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOiu74%3D&md5=81277c1db052ceccb4b5bc3a3387811fCAS |
[106] F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh, M. D. Kundrat, J. Phys. Chem. B 2005, 109, 6.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOrur%2FI&md5=31ad91f3b75914dcf8bfedaa71023c2bCAS |
[107] H. Wu, W. Zhou, K. Wang, T. J. Udovic, J. J. Rush, T. Yildirim, L. A. Bendersky, A. F. Gross, S. L. Van Atta, J. J. Vajo, F. E. Pinkerton, M. S. Meyer, Nanotechnology 2009, 20, 204002.
| Crossref | GoogleScholarGoogle Scholar |
[108] J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. O. Carter , C. Wolverton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch, V. Ozolins, J. Alloy. Comp. 2007, 446–447, 345.
| Crossref | GoogleScholarGoogle Scholar |
[109] M. U. Niemann, S. S. Srinivasan, A. Kumar, E. K. Stefanakos, D. Y. Goswani, K. McGrath, Int. J. Hydrogen Energy 2009, 34, 8086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqurzE&md5=652d7044925fe49907c4ea67f0a9bd66CAS |
[110] S. S. Srinivasan, M. U. Niemann, J. R. Hattrick-Simpers, K. McGrath, P. C. Sharma, D. Y. Goswani, E. K. Stefanakos, Int. J. Hydrogen Energy 2010, 35, 9646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrur7M&md5=e40614a07527ee9ecf520d0b04501e2aCAS |
[111] L. Xie, J. Zheng, Y. Liu, Y. Li, X. Li, Chem. Mater. 2008, 20, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsL%2FF&md5=e02ee73d5cd91a87b03191081ad24e94CAS |
[112] Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2gt7g%3D&md5=210f485f6e3aa8e22284fb3adb4ae757CAS |
[113] L. Xie, Y. Li, R. Yang, Y. Liu, X. Li, Appl. Phys. Lett. 2008, 92, 231910.
| Crossref | GoogleScholarGoogle Scholar |
[114] L. Xie, Y. Liu, G. Li, X. Li, J. Phys. Chem. C 2009, 113, 14523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVels7w%3D&md5=3fc6b26f1947d9f8b4ebcb3fb13ee9e1CAS |
[115] F. H. Stephens, V. Pons, R. T. Baker, Dalton Trans. 2007, 2613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFOisLo%3D&md5=c882b2628b6be61c78b3e08db5ba8979CAS |
[116] T. B. Marder, Angew. Chem. Int. Ed. 2007, 46, 8116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGju7rM&md5=f0e7653c16e87228c8fee25a4e33eaffCAS |
[117] D. A. Dixon, M. Gutowski, J. Phys. Chem. A 2005, 109, 5129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVSqu7Y%3D&md5=a03137c0d07f17221b667eff8653edf5CAS |
[118] F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Röbler, G. Leitner, Thermochim. Acta 2002, 391, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls12gsrY%3D&md5=a00fd7643c899ba7ae74922abc736276CAS |
[119] A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem. Int. Ed. 2005, 44, 3578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVykt70%3D&md5=840b43ba945a5813c50914900ba05de7CAS |
[120] A. Paolone, O. Palumbo, P. Rispoli, R. Cantelli, T. Autrey, A. Karkamkar, J. Phys. Chem. C 2009, 113, 10319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlKit78%3D&md5=a54a99abb17d3080ace0d4abf428dae9CAS |
[121] A. Feaver, S. Sepehri, P. Shamberger, A. Stowe, T. Autrey, G. Cao, J. Phys. Chem. B 2007, 111, 7469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlOnsbY%3D&md5=8b043814a7b47225a42ebc7d48848b69CAS |
[122] Z. Kurban, A. Lovell, S. M. Bennington, D. W. K. Jenkins, K. R. Ryan, M. O. Jones, N. T. Skipper, W. I. F. David, J. Phys. Chem. C 2010, 114, 21201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaisrrP&md5=27b69558e08002b7cd6865c926a204bdCAS |
[123] D. Neiner, A. Karkamkar, J. C. Lineham, B. Arey, T. Autrey, S. M. Kauzlarich, J. Phys. Chem. C 2009, 113, 1098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmtLjI&md5=e02d89ffb66760751fd16d7631a79e4fCAS |
[124] T. He, Z. Xiong, G. Wu, H. Chu, C. Wu, T. Zhang, P. Chen, Chem. Mater. 2009, 21, 2315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKksLg%3D&md5=e543bad563c6408ffcb219846e057af7CAS |