Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT (Open Access)

Engineering Enzymes for Energy Production

David L. Ollis A B , Jian-Wei Liu A and Bradley J. Stevenson A
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: ollis@rsc.anu.edu.au

Australian Journal of Chemistry 65(6) 652-655 https://doi.org/10.1071/CH11452
Submitted: 30 November 2011  Accepted: 15 February 2012   Published: 24 April 2012

Abstract

Harvesting the energy of sunlight can be achieved with a variety of processes and as one becomes obsolete, others will need to be developed to replace it. The direct conversion of sunlight into electrical energy could be used to provide power. Energy could also be obtained by combusting hydrogen produced by splitting of water with sunlight. None of these direct approaches will entirely satisfy the entire energy needs of a modern economy and the conversion of biological materials into liquid fuels for transport and other applications may prove to be important for tomorrow’s energy needs. In fact, biofuels such as bioethanol and biodiesel are already used in many countries. However, the long-term viability of these fuels depends on the efficiency of the processes used to produce them. We outline here a method by which ethanol can be produced using enzymes that can be optimized for this purpose.


References

[1]  S. N. Naik, V. V. Goud, P. Rout, A. K. Dalai, Renew. Sustain. Energy Rev. 2010, 14, 578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2isbvF&md5=2be3aa51dbb97c958fc713d475d6aa34CAS |

[2]  J. Goldemberg, Biotechnol. Biofuels 2008, 1, 6.

[3]  A. Banerjee, Dev. Change 2011, 42, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. Bokinsky, P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. Soon Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons, J. D. Keasling, Proc. Natl Acad. Sci. USA 2011, 108, 19949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12gtbjK&md5=008101a7ceba0314aa021f4a0ec809faCAS |

[5]  T. Maeda, V. Sanchez-Torres, T. K. Wood, Appl. Microbiol. Biotechnol. 2007, 77, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqtbzF&md5=aecf6922e9d693f6c1c40e668f36dc39CAS |

[6]  S. Atsumi, T. Hanai, J. C. Liao, Nature 2008, 451, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSltQ%3D%3D&md5=fea562f8730dcab077ebabe71dd9c005CAS |

[7]  E. J. Steen, Y. Kang, G. Bokinsky, Z. Hu, A. Schirmer, A. McClure, S. B. Del Cardayre, J. D. Keasling, Nature 2010, 463, 559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Slu70%3D&md5=19c35a19e87f8ca491a616c32d55fddcCAS |

[8]  C. Wang, S. H. Yoon, A. A. Shah, Y. R. Chung, J. Y. Kim, E. S. Choi, J. D. Keasling, S. W. Kim, Biotechnol. Bioeng. 2010, 107, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSisr7I&md5=37c20a65ad5b4099453a86bf16f73346CAS |

[9]  P. P. Peralta-Yahya, M. Ouellet, R. Chan, A. Mukhopadhyay, J. D. Keasling, T. S. Lee, Nat. Commun. 2011, 2, 483.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  F. H. Arnold, A. A. Volkov, Curr. Opin. Chem. Biol. 1999, 3, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1ektLc%3D&md5=3314941ebc71832c0a1226879b6c4a04CAS |

[11]  N. J. Turner, Nat. Chem. Biol. 2009, 5, 567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslentrk%3D&md5=c24bbe9b0a46793cb3eea9ad8d545348CAS |

[12]  C. J. Jackson, E. M. J. Gillam, D. L. Ollis, in Comprehensive Natural Products Chemistry II: Modern Methods in Natural Product Chemistry (Eds L. N. Mander, H.-W. Liu) 2010, Vol. 9, Ch. 20, pp. 723–749. (Elsevier: Oxford, UK).

[13]  B. J. Stevenson, J.-W. Liu, P. W. Kuchel, D. L. Ollis, J. Biotechnol. 2012, 157, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCqtg%3D%3D&md5=963f3b2b248a5c7a01165c509cf93072CAS |

[14]  B. J. Stevenson, J.-W. Liu, D. L. Ollis, Biochemistry 2008, 47, 3013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Omtro%3D&md5=a72000e50994b69c8469444e6092d0feCAS |

[15]  L. O. Ingram, T. Conway, D. P. Clark, G. W. Sewell, J. F. Preston, Appl. Environ. Microbiol. 1987, 53, 2420.
         | 1:CAS:528:DyaL2sXmtFaqsLc%3D&md5=26dc7b7fd834056e6348ae8325986e76CAS |