Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Recent Highlights in the use of Lanthanide-directed Synthesis of Novel Supramolecular (Luminescent) Self-assembly Structures such as Coordination Bundles, Helicates and Sensors

Christophe Lincheneau A , Floriana Stomeo A , Steve Comby A and Thorfinnur Gunnlaugsson A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Centre for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2, Ireland.

B Corresponding author. Email: gunnlaut@tcd.ie




Christophe Lincheneau was born in 1981 in Bordeaux, France. He completed his Ph.D. degree in 2011 under the supervision of Professor T. Gunnlaugsson at Trinity College Dublin, Ireland, where his work focused on the synthesis and photophysical studies of lanthanide-containing supramolecular architectures. He is currently working as a post-doctoral associate with Professor A. Credi at the University of Bologna, Italy.



Floriana Stomeo was born in Maglie (Lecce) in the south of Italy in 1976, and graduated with a degree in Chemistry from the University of Pavia, Italy, before heading to Dublin where she completed her Ph.D. in supramolecular chemistry in October 2006 under the supervision of Professor T. Gunnlaugsson. She held several positions within the Irish pharmaceutical industry working with companies such as Pfizer (Little Island, Cork) and Wyeth (Dublin) before taking up a position with Ipsen Pharmaceuticals (Dublin).



Steve Comby was born in 1979 in Chamoson (VS), Switzerland. He earned his Ph.D. degree under the supervision of Professor J.-C. Bünzli at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in 2008, where he worked on the development of luminescent lanthanide edifices. He then joined Professor T. Gunnlaugsson's group in Trinity College Dublin, Ireland, where he is currently a post-doctoral associate. His current interest lies in the design of novel lanthanide-based sensors.



Professor Thorfinnur (Thorri) Gunnlaugsson currently holds a Personal Chair in Chemistry, in the School of Chemistry, Trinity College Dublin. He obtained his Ph.D. from Queen's University Belfast and was a postdoctoral fellow in Durham University (1996–1998) before being appointed to a Kinerton Lectureship in Medicinal Chemistry in TCD, followed by a lectureship in Organic Chemistry in 2000. He was made an Associate Professor in 2004 and was promoted to a Personal Chair in 2008. He was an Erskine Fellow in the Department of Chemistry, University of Canterbury, Christchurch, New Zealand in 2009 and held visiting professorships at both CNRS/Université Bordeaux 1 (2008) and at Deakin University (2005). He was awarded the Bob Hay Lectureship by the RSC Macrocylic and Supramolecular Chemistry Group in 2006. He was elected as a Member of the Royal Irish Academy in 2010.

Australian Journal of Chemistry 64(10) 1315-1326 https://doi.org/10.1071/CH11184
Submitted: 29 July 2011  Accepted: 10 August 2011   Published: 13 October 2011

Abstract

In this short review, we focus on the recent developments within the field of coordination chemistry where mono- or multimetallic supramolecular self-assemblies are formed by employing structurally defined organic ligands, taking advantage of the high coordination requirements of the lanthanides. Such synthesis results in the formation of both structurally complex and beautiful self-assemblies. Moreover, as the lanthanide ions possess both unique magnetic (e.g. GdIII and DyIII) and luminescent properties, either in the visible (EuIII, SmIII and TbIII) or near-infrared regions (YbIII, NdIII, ErIII), these physical features are usually transferred to the self-assemblies themselves, allowing the formation of highly functional structures, such as coordination networks, as well as molecular bundles and helicates. Hence, examples of the use of lanthanide-directed synthesis of luminescent sensors, some of which are formed on solid surfaces such as gold (flat surface or nanoparticles), and imaging agents are presented. Moreover, we demonstrate that by using chiral organic ligands, lanthanide-directed synthesis can also give rise to the formation of enantiomerically pure self-assemblies, the structure of which can be probed using circularly polarized luminescence.


References

[1]  C. Huang (Ed.) Rare Earth Coordination Chemistry Fundamentals and Applications 2010 (John Wiley & Sons (Asia): Singapore).

[2]  (a) C. M. G. dos Santos, A. J. Harte, S. Quinn, T. Gunnlaugsson, Coord. Chem. Rev. 2008, 252, 2512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGjtbfI&md5=2eb9a38076fc87317a2634483f304b47CAS |
      (b) J. P. Leonard, C. B. Nolan, F. Stomeo, T. Gunnlaugsson, Top. Curr. Chem. 2007, 281, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Gunnlaugsson, J. P. Leonard, Chem. Commun. 2005, 3114.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. P. Leonard, T. Gunnlaugsson, J. Fluoresc. 2005, 15, 585.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) C. S. Bonnet, E. Tóth, C. R. Chim. 2010, 13, 700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFKlt7s%3D&md5=3a5926ea890e5ca7988fdea599318aeeCAS |
      (b) L. M. De Leon-Rodriguez, A. J. M. Lubag, C. R. Malloy, G. V. Martinez, R. J. Gillies, A. D. Sherry, Acc. Chem. Res. 2009, 42, 948.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Aime, D. D. Castelli, S. G. Crich, E. Gianolio, E. Terreno, Acc. Chem. Res. 2009, 42, 822.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Caravan, Acc. Chem. Res. 2009, 42, 851.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Datta, K. N. Raymond, Acc. Chem. Res. 2009, 42, 938.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Binnemans, Chem. Rev. 2009, 109, 4283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleltLk%3D&md5=a4a72106a922b3136a2a7435ae118a13CAS |

[5]  (a) S. E. Plush, T. Gunnlaugsson, Org. Lett. 2007, 9, 1919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSmtr4%3D&md5=53d9ff59269a72698edaa0c714595c9eCAS |
      (b) A. J. Harte, P. Jensen, S. E. Plush, P. E. Kruger, T. Gunnlaugsson, Inorg. Chem. 2006, 45, 9465.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Gunnlaugsson, A. J. Harte, J. P. Leonard, M. Nieuwenhuyzen, Supramol. Chem. 2003, 15, 505.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) J.-C. G. Bünzli, A.-S. Chauvin, C. D. B. Vandevyver, B. Song, S. Comby, Ann. N. Y. Acad. Sci. 2008, 1130, 97.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. S. Murray, E. J. New, R. Pal, D. Parker, Org. Biomol. Chem. 2008, 6, 2085.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Kiellar, G.-L. E. J. Law, D. Parker, Org. Biomol. Chem. 2008, 6, 2256.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 2010, 254, 487.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) M. Cantuel, C. Lincheneau, T. Buffeteau, L. Jonusauskaite, T. Gunnlaugsson, G. Jonusauskas, N. D. McClenaghan, Chem. Commun. 2010, 46, 2486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gnur0%3D&md5=3a548270f233d6e5ce072a47d4407f6fCAS |
      (b) C. M. G. dos Santos, T. Gunnlaugsson, Dalton Trans. 2009, 47121.
      (c) S. E. Plush, T. Gunnlaugsson, Dalton Trans. 2008, 3801.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. P. Leonard, C. M. G. dos Santos, Chem. Commun. 2007, 129.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K. Sénéchal-David, S. J. A. Pope, S. Quinn, S. Faulkner, T. Gunnlaugsson, Inorg. Chem. 2006, 45, 10040.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. P. McCoy, F. Stomeo, S. E. Plush, T. Gunnlaugsson, Chem. Mater. 2006, 18, 4336.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) T. Gunnlaugsson, C. P. McCoy, F. Stomeo, Tetrahedron Lett. 2004, 45, 8403.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J.-C. G. Bünzli, Chem. Lett. 2009, 38, 104.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. Song, D. B. Vandevyver, E. Deiters, A.-S. Chauvin, I. Hemmila, J.-C. G. Bünzli, Analyst 2008, 133, 1749.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Pandya, J. Yu, D. Parker, Dalton Trans. 2006, 2757.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. J. Yu, D. Parker, R. Pal, R. A. Poole, M. J. Cann, J. Am. Chem. Soc. 2006, 128, 2294.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  O. Kotova, S. Comby, T. Gunnlaugsson, Chem. Commun. 2011, 47, 6810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlagsbw%3D&md5=5d6fd16400deb0303c04edc24c2cbadcCAS |

[10]  C. M. G. dos Santos, P. B. Fernandez, S. E. Plush, J. P. Leonard, T. Gunnlaugsson, Chem. Commun. 2007, 3389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Cgtr8%3D&md5=4d068932b99a3db8f551f62d6eb256f1CAS |

[11]  (a) B. K. McMahon, P. Mauer, C. McCoy, T. C. Lee, T. Gunnlaugsson, Aust. J. Chem. 2011, 64, 600.
         | 1:CAS:528:DC%2BC3MXmvFyhsrk%3D&md5=fc5fdf606543134e18e2cf8bb8966bb8CAS |
      (b) B. McMahon, P. Mauer, C. McCoy, T. C. Lee, T. Gunnlaugsson, J. Am. Chem. Soc. 2009, 131, 17542.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) D. Parker, Aust. J. Chem. 2011, 64, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyntr8%3D&md5=ff30b44daa0aca1b50ca4838332312feCAS |
      (b) E. J. New, D. Parker, D. G. Smith, J. W. Walton, Curr. Opin. Chem. Biol. 2010, 14, 238.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. P. Montgomery, B. S. Murray, E. J. New, R. Pal, D. Parker, Acc. Chem. Res. 2009, 42, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlehu7c%3D&md5=4b68974e34b23971cc3d4763205928c2CAS |

[14]  T. Gunnlaugsson, F. Stomeo, Org. Biomol. Chem. 2007, 5, 1999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1egu7o%3D&md5=343fa722fa1cea42c9e05b7a3c726160CAS |

[15]  (a) R. M. Supkowski, W. D. Horrocks, Inorg. Chim. Acta 2002, 340, 44.For EuIII, this is determined by using either the equations of Horrocks or Parker:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFOlsLk%3D&md5=d46584d91e6f98e95af77f1b680ebc41CAS |
      (b) A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, M. Woods, J. Chem. Soc., Perkin Trans. 2 1999, 493.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) J. Massue, S. J. Quinn, T. Gunnlaugsson, J. Am. Chem. Soc. 2008, 130, 6900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslamt7g%3D&md5=16b161b2e570fecbedd749254e6299acCAS |
      (b) C. S. Bonnet, J. Massue, S. J. Quinn, T. Gunnlaugsson, Org. Biomol. Chem. 2009, 7, 3074.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. S. Murray, S. P. Jarvis, T. Gunnlaugsson, Chem. Commun. 2009, 4959.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  B. K. McMahon, T. Gunnlaugsson, Tetrahedron Lett. 2010, 51, 5406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsLbI&md5=448ca7439f7318e941eec04cd8d78140CAS |

[18]  A. M. Nonat, A. J. Harte, K. Sénéchal-David, J. P. Leonard, T. Gunnlaugsson, Dalton Trans. 2009, 4703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKiu78%3D&md5=22af76729f180fa4fbd33ef4112b788bCAS |

[19]  K. Sénéchal-David, J. P. Leonard, S. E. Plush, T. Gunnlaugsson, Org. Lett. 2006, 8, 2727.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. M. Nonat, C. Allain, S. Faulkner, T. Gunnlaugsson, Inorg. Chem. 2010, 49, 8449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrsLzK&md5=c59cf290ab8d3a13b275de1ce102b130CAS |

[21]  A. M. Nonat, S. J. Quinn, T. Gunnlaugsson, Inorg. Chem. 2009, 48, 4646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKkt78%3D&md5=44cbc24f01853b1e00a8097a4bec8bc8CAS |

[22]  T. Yamada, S. Shinoda, H. Tsukube, Chem. Commun. 2002, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslaltL4%3D&md5=d54e2d93abcd5174d8daa30a283dc6e5CAS |

[23]  S. Shinoda, K. Yano, H. Tsukube, Chem. Commun. 2010, 46, 3110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Crs7Y%3D&md5=28c312c4fd91d19adf2e6c0f19df2da8CAS |

[24]  L. Charbonnière, R. Ziessel, M. Guardigli, A. Roda, N. Sabbatini, M. Cesario, J. Am. Chem. Soc. 2001, 123, 2436.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  G. Canard, S. Koeller, G. Bernardinelli, C. Piguet, J. Am. Chem. Soc. 2008, 130, 1025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOnt7nM&md5=b1b5edb068733a4d7bcef08ce0e9a598CAS |

[26]  J. P. Leonard, P. Jensen, T. McCabe, J. E. O’Brien, R. D. Peacock, P. E. Kruger, T. Gunnlaugsson, J. Am. Chem. Soc. 2007, 129, 10986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVaqt7s%3D&md5=bddf5bceca5b66f127b6fa39d5befb51CAS |

[27]  C. Lincheneau, J. P. Leonard, T. McCabe, T. Gunnlaugsson, Chem. Commun. 2011, 47, 7119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCms7Y%3D&md5=f6629671c9970c779053a4ba56ac0afdCAS |

[28]  O. Mamula, M. Lama, S. G. Telfer, A. Nakamura, R. Kuroda, H. Stoeckli-Evans, R. Scopelitti, Angew. Chem. Int. Ed. 2005, 44, 2527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFejt7c%3D&md5=2c08e30fb3f3c599426f49054a727e09CAS |

[29]  S. Comby, D. Imbert, A. S. Chauvin, J. C. G. Bünzli, L. J. Charbonnière, R. F. Ziessel, Inorg. Chem. 2004, 43, 7369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Khsb4%3D&md5=fd776ab1fd8c5d7197d14f847f737f8dCAS |

[30]  S. Comby, R. Scopelliti, D. Imbert, L. J. Charbonnière, R. Ziessel, J. C. G. Bünzli, Inorg. Chem. 2006, 45, 3158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFOltLk%3D&md5=42b73f87db6507c4c41fe4a681899be6CAS |

[31]  X. Y. Chen, Y. Bretonniere, J. Pecaut, D. Imbert, J. C. G. Bünzli, M. Mazzanti, Inorg. Chem. 2007, 46, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCgsr7F&md5=04371d0f4ec91d3c718397780d7ed55fCAS |

[32]  N. R. Kelly, S. Goetz, C. S. Hawes, P. E. Kruger, Tetrahedron Lett. 2011, 52, 995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtbw%3D&md5=ffb6ffef2426b4e7f96d6c106e1eddf0CAS |

[33]  C. Butler, S. Goetz, C. M. Fitchett, P. E. Kruger, T. Gunnlaugsson, Inorg. Chem. 2011, 50, 2723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKjurY%3D&md5=bebfb41cf3c65c7396909773298d3d36CAS |

[34]  C.-G. Wang, Y.-H. Xing, Z.-P. Li, J. Li, X.-Q. Zeng, M.-F. Ge, S.-Y. Niu, Cryst. Growth Des. 2009, 9, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GhtLg%3D&md5=d34db3973fd34b69a42df1152ed163e6CAS |

[35]  D. Guo, C.-Y. Duan, F. Lu, Y. Hasegawa, Q.-j. Meng, S. Yanagida, Chem. Commun. 2004, 1486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWns7k%3D&md5=068e43ed7226de68d5a003c590a6561aCAS |

[36]  (a) N. M. Shavaleev, G. Accorsi, D. Virgili, Z. R. Bell, T. Lazarides, G. Calogero, N. Armaroli, M. D. Ward, Inorg. Chem. 2005, 44, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvF2ktL8%3D&md5=1655c63497d20c70e1f10074261427feCAS |
      (b) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg, R. W. Harrington, M. D. Ward, Chem. Eur. J. 2006, 12, 9299.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) (c) S. Comby, J.-C. G. Bünzli, in Handbook on the Physics and Chemistry of Rare Earths 2007, Vol. 37, Ch. 235, pp. 217–470 (Eds K. A. Gschneidner Jr, J.-C. G. Bünzli and V. K Pecharsky) (Elsevier Science BV: Amsterdam).

[37]  J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  C. Piguet, J.-C. G. Bünzli, in Handbook on the Physics and Chemistry of Rare Earths 2010 Vol. 40, Ch. 247, pp. 301–553 (Eds K. A. Gschneidner Jr, J.-C. G. Bünzli and V. K Pecharsky) (Elsevier Science BV: Amsterdam).

[39]  M. Elhabiri, R. Scopelliti, J. C. G. Bünzli, C. Piguet, J. Am. Chem. Soc. 1999, 121, 10747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVaksrc%3D&md5=f6945b44b6288106dd8b13d47c698a98CAS |

[40]  J. J. Lessmann, W. D. Horrocks, Inorg. Chem. 2000, 39, 3114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1yrtrY%3D&md5=d832b4313561cce3733d8d1f80639e69CAS |

[41]  M. Elhabiri, R. Scopelliti, J. C. G. Bünzli, C. Piguet, Chem. Commun. 1998, 2347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVSntLo%3D&md5=dd19b9feab1c4eac5a3308095374d217CAS |

[42]  S. Floquet, M. Borkovec, G. Bernardinelli, A. Pinto, L. A. Leuthold, G. Hopfgartner, D. Imbert, J. C. G. Bünzli, C. Piguet, Chem. Eur. J. 2004, 10, 1091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVahsro%3D&md5=56a529ab4b6516350398597b27d88d3aCAS |

[43]  J. C. G. Bünzli, Chem. Rev. 2010, 110, 2729.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  (a) C. P. Montgomery, B. S. Murray, E. J. New, R. Pal, D. Parker, Acc. Chem. Res. 2009, 42, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlehu7c%3D&md5=4b68974e34b23971cc3d4763205928c2CAS |
      (b) S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Thibon, V. C. Pierre, Anal. Bioanal. Chem. 2009, 394, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  (a) E. Deiters, B. Song, A.-S. Chauvin, C. D. B. Vandevyver, F. Gumy, J.-C. G. Bünzli, Chem. Eur. J. 2009, 15, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGmtr8%3D&md5=6e1c340a35580836393d9d07cd1cc148CAS |
      (b) A.-S. Chauvin, S. Comby, B. Song, C. D. B. Vandevyver, J.-C. G. Bünzli, Chem. Eur. J. 2007, 13, 9515.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A.-S. Chauvin, S. Comby, B. Song, C. D. B. Vandevyver, J.-C. G. Bünzli, Chem. Eur. J. 2008, 14, 1726.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  V. Fernández-Moreira, B. Song, V. Sivagnanam, A.-S. Chauvin, C. D. B. Vandevyver, M. Gijs, I. Hemmilä, H.-A. Lehr, J.-C. G. Bünzli, Analyst 2010, 135, 42.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  C. Piguet, M. Borkovec, J. Hamacek, K. Zeckert, Coord. Chem. Rev. 2005, 249, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gnt7s%3D&md5=a1e8ddb8a72a4367514aa99050941320CAS |

[48]  (a) N. André, R. Scopelliti, G. Hopfgartner, C. Piguet, J.-C. G. Bünzli, Chem. Commun. 2002, 214.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. André, T. B. Jensen, R. Scopelliti, D. Imbert, M. Elhabiri, G. Hopfgartner, C. Piguet, J.-C. G. Bünzli, Inorg. Chem. 2004, 43, 515.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  T. Riis-Johannessen, G. Bernardinelli, Y. Filinchuk, S. Clifford, N. Dalla-Favera, C. Piguet, Inorg. Chem. 2009, 48, 5512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyqtLY%3D&md5=b172df1d27f88af579a07f61f0855b24CAS |

[50]  (a) N. Dalla-Favera, J. Hamacek, M. Borkovec, D. Jeannerat, G. Ercolani, C. Piguet, Inorg. Chem. 2007, 46, 9312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSqs7zE&md5=b6ed6cb1f54d51f9bc37516c842bd43fCAS |
      (b) N. Dalla-Favera, J. Hamacek, M. Borkovec, D. Jeannerat, F. Gumy, J.-C. G. Bünzli, G. Ercolani, C. Piguet, Chem. Eur. J. 2008, 14, 2994.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. P. Bassett, S. W. Magennis, P. B. Glover, D. J. Lewis, N. Spencer, S. Parsons, R. M. Williams, L. De Cola, Z. Pikramenou, J. Am. Chem. Soc. 2004, 126, 9413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFentbo%3D&md5=5d33797d6bbbbead92eb306836da2178CAS |

[52]  X. Zhu, C. He, D. Dong, Y. Liu, C. Duan, Dalton Trans. 2010, 39, 10051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSmsr3L&md5=df6ca295a0f084922792f9d9610022a0CAS |

[53]  M. Albrecht, O. Osetska, Eur. J. Inorg. Chem. 2010, 4678.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqt7jE&md5=8d119f2a29e30a0864ac93e9f84fb2d8CAS |

[54]  M. Albrecht, O. Osetska, J.-C. G. Bünzli, F. Gumy, R. Fröhlich, Chem. Eur. J. 2009, 15, 8791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2rsLrK&md5=e9d2518d60561f30eb991923ee2f868aCAS |

[55]  E. Terazzi, L. Guénée, J. Varin, B. Bocquet, J.-F. Lemonnier, D. Emery, J. Mareda, C. Piguet, Chem. Eur. J. 2011, 17, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1OgtQ%3D%3D&md5=ae8381383457306b87e9059ddb4e5362CAS |

[56]  F. Stomeo, C. Lincheneau, J. P. Leonard, J. E. O’Brian, R. D. Peacock, C. P. McCoy, T. Gunnlaugsson, J. Am. Chem. Soc. 2009, 131, 9636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Shsb0%3D&md5=c98b03c1062e1c9091a01a272a4cea0bCAS |

[57]  C. Lincheneau, R. D. Peacock, T. Gunnlaugsson, Chem. Asian J. 2010, 5, 500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVSmtrs%3D&md5=a978156b14313b3a89310de318179929CAS |

[58]  S. Comby, F. Stomeo, C. P. McCoy, T. Gunnlaugsson, Helv. Chim. Acta 2009, 92, 2461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrtbbP&md5=44b103137a3596a878093d4b1eb96fdaCAS |