Ion Translocation in Artificial Molecule-based Systems Induced by Light, Electrons, or Chemicals
Robin Bofinger A , Aurélien Ducrot A , Laura Jonusauskaite A , Nathan D. McClenaghan A B , Jean-Luc Pozzo A , Guillaume Sevez A and Guillaume Vives AA University of Bordeaux/CNRS, Institut des Sciences Moléculaires, UMR 5255, 33405 Talence cedex, France.
B Corresponding author. Email: n.mc-clenaghan@ism.u-bordeaux1.fr
Robin Bofinger studied chemistry with a focus on molecular biotechnology at the University of Applied Science in Aalen (Germany). He carried out his diploma thesis at the University of Aachen under the supervision of Professor Elmar Weinhold, working on the synthesis of an artificial, extracellular matrix using chemo-enzymatic methods. In 2010, he started his Ph.D. in the group of Dr Nathan D. McClenaghan where he is synthesizing and studying photoresponsive receptors and fluorescent molecules in solution and organized assemblies. |
Aurélien Ducrot studied chemistry in Bordeaux and obtained his Master's degree in nanosciences and biological chemistry in 2009. He is currently pursuing his Ph.D. under the supervision of Dr Nathan D. McClenaghan working on the synthesis and study of photoejectors of ions. Also, he teaches organic chemistry as an assistant at the University of Bordeaux (France). |
Laura Jonusauskaite studied chemistry at the University of Bordeaux where she obtained her Master's degree in organic chemistry in 2008, with a research project on the synthesis of molecules potentially active on the CNS in Sanofi Aventis, Paris, under the supervision of Jean-François Sabuco. In 2008, she started her Ph.D. at the University of Bordeaux under the supervision of Professor Jean-Luc Pozzo in a close collaboration with Drs Nathan D. McClenaghan and Isabelle Leray (PPSM, ENS Cachan). She is working on photochromic receptors and communication between photocontrolled molecules. |
Nathan D. McClenaghan was born in Ulster in 1973 and was appointed tenured researcher in the French Centre National de la Recherche Scientifique at Bordeaux in 2003, after a Ph.D. thesis under the supervision of Professor A. P. de Silva and successive European post-doctoral projects in Italy and France. Primary research interests focus on supramolecular chemistry, notably synthesis and studies of photoactive molecules and assemblies, and fast photoinduced processes therein. He is the recipient of the CNRS bronze medal for physical chemistry and a laureate of the European Research Council Young Investigator Award. |
Jean-Luc Pozzo was awarded diplomas from Paris VI University (1987) and the National School of Chemistry of Paris (ENSCP, 1989) followed by an M.S. degree from Aix-Marseille II University (1990). His Ph.D. (1993) from Université de la Méditerranée (Marseilles) focussed on T-type photochromes such as chromenes and naphthooxazines. Essilor International-PPG Industries offered him a grant for an industrial post-doctoral stay on tunable ophthalmic lenses. Since 2002, he has been full Professor at the University of Bordeaux developing photoswitchable NLOphores and gelators as well as multiaddressable self-assemblies and bi- and triphotochromics. |
Guillaume Sevez studied chemistry at the University of Bordeaux where he obtained a Master's degree in Nanosciences and Molecular Chemistry in 2006 and a Ph.D. in 2009 under the direction of Professor Jean-Luc Pozzo. His research concerned synthesis and study of multiaddressable molecules based on diarylethenes and indolino-oxazolidines and logic systems based on biphotochromic compounds. Subsequently his European post-doctoral fellowship with Dr Nathan D. McClenaghan focussed on the communication between molecules via photocontrolled ions. |
Guillaume Vives graduated from the Ecole Normale Supérieure of Lyon where he obtained the agrégation of chemistry. He obtained his Ph.D. in 2007 from the University Paul Sabatier, Toulouse, working on the introduction of organic and organometallic insulating fragments in molecular motors under the supervision of Dr Gwenael Rapenne and Professor Jean-Pierre Launay. After successive post-doctoral positions developing molecular machines and devices at Rice University (USA) and University Bordeaux/CNRS (France), he is now Associate Professor at the University Pierre et Marie Curie, Paris VI. |
Australian Journal of Chemistry 64(10) 1301-1314 https://doi.org/10.1071/CH11177
Submitted: 4 May 2011 Accepted: 26 July 2011 Published: 13 October 2011
Abstract
Synthetic molecules and nanodevices, like their more elaborate biological counterparts, have been shown to perform several sophisticated functions, using even fairly simple molecular architectures. One limitation to developing artificial molecular arrays and networks from these miniscule building blocks is the lack of a unifying strategy whereby they can communicate or interact together, which has been successfully developed in natural systems. Understanding and harnessing these efficient biological processes could prove key in the development of future integrated molecule-based nanodevices and networks. Herein, we give a short overview of some manifestations of intra- and intermolecular communication based on chemical messengers in artificial systems, in some ways analogous to natural systems, which are in turn controlled by light, a redox process or a chemical reaction or interaction. Some advantages, limitations, and challenges are highlighted.
References
[1] R. P. Feynman, 1959, Plenty of Room at the Bottom, Presentation to American Physical Society. Available online at: http://www.its.caltech.edu/~feynman/plenty.html (accessed August 2011).[2] J. Berná, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Pérez, P. Rudolf, G. Teobaldi, F. Zerbetto, Nat. Mater. 2005, 4, 704.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. Koumura, R. W. J. Zijistra, R. A. Van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFKhu7w%3D&md5=3d7e2db03e3958378d66d9099b3cf0ceCAS |
[4] R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, B. L. Feringa, Nature 2005, 437, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrur3O&md5=6a8a87f35b481b9db36c1c9af301297fCAS |
[5] A. P. de Silva, N. D. McClenaghan, Chemistry 2004, 10, 574.
| Crossref | GoogleScholarGoogle Scholar |
[6] V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines 2003 (Wiley-VCH: Weinheim).
[7] E. R. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 2006, 46, 72.
| Crossref | GoogleScholarGoogle Scholar |
[8] V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpslGgug%3D%3D&md5=2e7a6c477c4c821b6c87fcd5fb734e84CAS |
[9] J. Engebrecht, K. Nealson, M. Silverman, Cell 1983, 32, 773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsFOksbY%3D&md5=2bbdefa8a01128e71a12e8774dcb86d9CAS |
[10] W. C. Fuqua, S. C. Winans, E. P. Greenberg, J. Bacteriol. 1994, 176, 269.
| 1:CAS:528:DyaK2cXhtVWgs7c%3D&md5=2dbe2aad1798ba0b84b2bdaabfcae49cCAS |
[11] N. Amara, R. Mashiach, D. Amar, P. Krief, S. A. H. Spieser, M. J. Bottomley, A. Aharoni, M. M. Meijler, J. Am. Chem. Soc. 2009, 131, 10610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1ejtLw%3D&md5=525ec40a923778a25ebe03dcbb5804f4CAS |
[12] J. C. March, W. E. Bentley, Curr. Opin. Biotechnol. 2004, 15, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFCrs70%3D&md5=a13a4f10f5e89ecb2a64653470b6a718CAS |
[13] G. D. Geske, J. C. O’Neill, H. E. Blackwell, Chem. Soc. Rev. 2008, 37, 1432.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFejsb8%3D&md5=fc5970d3e5ede6077fd059373fde60f4CAS |
[14] C. A. Lowery, J. Park, C. Gloeckner, M. M. Meijler, R. S. Mueller, H. I. Boshoff, R. L. Ulrich, C. E. Barry III, C. A. Lowery, J. Park, C. Gloeckner, M. M. Meijler, R. S. Mueller, H. I. Boshoff, R. L. Ulrich, C. E. Barry III, J. Am. Chem. Soc. 2009, 131, 14473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjtrrM&md5=04a6a24513366ca7551de90f602f37abCAS |
[15] P. D. Boyer, Annu. Rev. Biochem. 1997, 66, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOls70%3D&md5=eaca8b765dba32b854dd7f780b7e683cCAS |
[16] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVWmtrw%3D&md5=7e0f505d975099717979b8937acb15c4CAS |
[17] A. C. Dolphin, Pharmacol. Rev. 2003, 55, 607.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWrsg%3D%3D&md5=15967a6ee2cadcb07d6edf1e63e16e02CAS |
[18] M. J. Berridge, Nature 1993, 361, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvVGrt7o%3D&md5=cc0a04673c9912547b5785641b140b79CAS |
[19] D. M. Eigler, C. P. Lutz, W. E. Rudge, Nature 1991, 352, 600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslWrsbg%3D&md5=1c40bebf92fe6e71f7fa5715be3b1de0CAS |
[20] L. Zelikovich, J. Libman, A. Shanzer, Nature 1995, 374, 790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Orsr4%3D&md5=26095bfbe1bcbaa969694f5080eee09cCAS |
[21] C. Canevet, J. Libman, A. Shanzer, Angew. Chem. Int. Ed. 1996, 35, 2657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFGqu7Y%3D&md5=4229897e5ff84efaed506ce694776bc6CAS |
[22] B. F. Matzanke, G. Müller-Matzanke, K. N. Raymond, Iron Carriers and Iron Proteins 1989, pp. 1–121 (Ed. T. M. Loehr) (VCH: Weiheim).
[23] T. R. Ward, A. Lutz, S. P. Parel, J. Ensling, P. Gütlich, P. Buglyó, C. Orvig, Inorg. Chem. 1999, 38, 5007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsV2nu7c%3D&md5=573266ad3af33d5753584f201aad041fCAS |
[24] V. L. Pecoraro, G. B. Wong, T. A. Kent, K. N. Raymond, J. Am. Chem. Soc. 1983, 105, 4617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlaitrg%3D&md5=ed46d419c9de1290a0b5299bea2cf0ceCAS |
[25] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavincini, Acc. Chem. Res. 2001, 34, 488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGrtLY%3D&md5=55f09372b133c64d9f5995dd2a0adac0CAS |
[26] G. De Santis, L. Fabbrizzi, D. Iacopino, P. Pallavicini, A. Perotti, A. Poggi, Inorg. Chem. 1997, 36, 827.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Zahn, J. Canary, Angew. Chem. Int. Ed. 1998, 37, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFGku7o%3D&md5=b0c22159f37e235a59c9e3ca51dd0ec0CAS |
[28] U. Darbost, V. Penin, E. Jeanneau, C. Félix, F. Vocanson, C. Bucher, G. Royal, I. Bonnamour, Chem. Commun. 2009, 6774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCgtLbN&md5=24a3ffb1280d0e348606f4a47e53c4c4CAS |
[29] K. K. Sadhu, P. K. Bharadwaj, Chem. Commun. 2008, 4180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFektb3E&md5=3c8400fcf29eab40f324d9cefe8e9fc1CAS |
[30] A. P. de Silva, T. S. Moody, G. D. Wright, Analyst 2009, 134, 2385.
| Crossref | GoogleScholarGoogle Scholar |
[31] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Perotti, A. Taglietti, J. Chem. Soc., Dalton Trans. 2000, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVSjsg%3D%3D&md5=7eef681d15aff1aad5e6f6a1ca4f8b3dCAS |
[32] S. Durot, F. Reviriego, J.-P. Sauvage, Dalton Trans. 2010, 39, 10557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmsLvI&md5=d18e59220179eec451b80fefda54c9afCAS |
[33] S. Bonnet, J.-P. Collin, M. Koizumi, P. Mobian, J.-P. Sauvage, Adv. Mater. 2006, 18, 1239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Wms78%3D&md5=218c412a4a84bb855b2d7a8a3ae3594cCAS |
[34] A. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 9399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslSgs7k%3D&md5=1bbe19cc9f7f4bf4e5bddfe6d6b7cd64CAS |
[35] D. J. Cárdenas, A. Livoreil, J.-P. Sauvage, J. Am. Chem. Soc. 1996, 118, 11980.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. C. Jiménez, C. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. 2000, 39, 3284.
| Crossref | GoogleScholarGoogle Scholar |
[37] F. Durola, J. Lux, J.-P. Sauvage, Chemistry 2009, 15, 4124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2jsbw%3D&md5=83c4b75357c22c916313ae0372c284e2CAS |
[38] C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVanur4%3D&md5=a378b2c4ff6590b6e292643eea2cc8f4CAS |
[39] R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi, Acc. Chem. Res. 2001, 34, 445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGrtLg%3D&md5=b4b02af15470f02ceb5f52ab4636ac0eCAS |
[40] P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, K. Ruprecht Dress, E. Ishow, C. J. Kleverlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. Wenger, Chemistry 2000, 6, 3558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVeit7g%3D&md5=224d74e1bb32ddee0951df66c774c857CAS |
[41] Y.-K. Kwon, D. Tománek, S. Iijima, Phys. Rev. Lett. 1999, 82, 1470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtF2lsrk%3D&md5=5b8eee71b5d1c6aa043af929a8b46a16CAS |
[42] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, J. R. Heath, Nature 2007, 445, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12nug%3D%3D&md5=4108a820889c811c21581a4130a2b5f6CAS |
[43] L. Fabbrizzi, F. Foti, S. Patroni, P. Pallavicini, A. Taglietti, Angew. Chem. Int. Ed. 2004, 43, 5073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKrt7w%3D&md5=c47fa23dbaa45e4a4aaadf2ac7b319ffCAS |
[44] P. Pallavicini, G. Dacarro, C. Magano, S. Patroni, A. Taglietti, R. Zanoni, Eur. J. Inorg. Chem. 2006, 4649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnsr3J&md5=431b96bc21cddaf557366cebcb4deea5CAS |
[45] V. Amendola, L. Fabbrizzi, C. Mangano, H. Miller, P. Pallavicini, A. Perotti, A. Taglietti, Angew. Chem. Int. Ed. 2002, 41, 2553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Oiurs%3D&md5=9e99cf3c0b399cd364ee686f9106dfbaCAS |
[46] B. Colasson, N. Le Poul, Y. Le Mest, O. Reinaud, J. Am. Chem. Soc. 2010, 132, 4393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVOgt7w%3D&md5=78447b67a7fec629c355ca39da0fc087CAS |
[47] A. Ikeda, T. Tsudera, S. Shinkai, J. Org. Chem. 1997, 62, 3568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFGju7g%3D&md5=c9d3992b3259d680720a05bed9c660a4CAS |
[48] J. S. Kim, S. H. Yang, J. A. Rim, J. Y. Kim, J. Vicens, S. Shinkai, Tetrahedron Lett. 2001, 42, 8047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsl2qt7g%3D&md5=3e327f3cd1ed074111d34ce7a4aea13fCAS |
[49] J. S. Kim, K. H. Noh, S. H. Lee, S. K. Kim, J. Yoon, J. Org. Chem. 2003, 68, 597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1ygu7Y%3D&md5=4df4a860bf39af748394179032b46bd3CAS |
[50] B. Valeur, I. Leray, L. Zhao, V. Souchon, R. Métivier, P. Plaza, C. Ley, F. Lacombat, M. M. Martin, ChemPhysChem 2010, 11, 2416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyrs74%3D&md5=af32a7439c42675d5bdf8012979008b2CAS |
[51] C. Ley, F. Lacombat, P. Plaza, M. M. Martin, I. Leray, B. Valeur, ChemPhysChem 2009, 10, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sns7g%3D&md5=ea2fc422688906d4b1640b9ac2013c0dCAS |
[52] C. G. Bochet, Pure Appl. Chem. 2006, 78, 241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVyntLY%3D&md5=fb95d4c9371ea354ceced5868fa2473cCAS |
[53] A. G. Lee, Rhodopsin and G-Protein Linked Receptors, Part A, Vol. 2 1996, pp. 33–198 (JAI Press: Greenwich, CT).
[54] L. Peteanu, R. W. Schoenlein, Q. Wang, R. A. Mathies, C. V. Shank, Proc. Natl. Acad. Sci. USA 1993, 90, 11762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpvFGqtA%3D%3D&md5=9dd0337da7d5a4f170fcb21308843d8fCAS |
[55] H. Nakamichi, T. Okada, Angew. Chem. Int. Ed. Engl. 2006, 45, 4270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFWqtrY%3D&md5=2acab7eca075258787b3c036f401e337CAS |
[56] R. R. Birge, Annu. Rev. Phys. Chem. 1990, 41, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtlWjtrk%3D&md5=79dd86526205fe9c8732d8508173b24eCAS |
[57] S. Shinkai, O. Manabe, Top. Curr. Chem. 1984, 121, 67.
| 1:CAS:528:DyaL2cXitFyqsrw%3D&md5=6244539088d3e38060d1344b07fdc0e1CAS |
[58] Molecular Switches (Ed. B. L. Feringa) 2001 (Wiley-VCH: Weinheim).
[59] Y. Hua, A. H. Flood, J. Am. Chem. Soc. 2010, 132, 12838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLrJ&md5=14a5f3b58e6778901e93a5b1ef8462ecCAS |
[60] J.-P. Malval, I. Gosse, J.-P. Morand, R. Lapouyade, J. Am. Chem. Soc. 2002, 124, 904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGitw%3D%3D&md5=af3f66421575a2f874defda0ac303b07CAS |
[61] D. Canevet, M. Sallé, G. Zhang, D. Zhang, D. Zhu, Chem. Commun. 2009, 2245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGksLw%3D&md5=2dd7e50264aadf73d08fb9c21e1923d6CAS |
[62] F. Le Derf, M. Sallé, N. Mercier, J. Becher, P. Richomme, A. Gorgues, J. Orduna, J. Garin, Eur. J. Org. Chem. 1998, 1861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVSgs7c%3D&md5=e3eb7bc301f544d1f17be791ff05e127CAS |
[63] F. Le Derf, M. Mazari, N. Mercier, E. Levillain, P. Richomme, J. Becher, J. Garin, J. Orduna, A. Gorgues, M. Sallé, Chem. Commun. 1999, 1417.
| Crossref | GoogleScholarGoogle Scholar |
[64] M. J. Blesa, B. T. Zhao, M. Allain, F. Le Derf, M. Sallé, Chemistry 2006, 12, 1906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Klsrg%3D&md5=85f49fa3e32b6d086377ee28fd1d4f63CAS |
[65] F. Le Derf, E. Levillain, G. Trippé, A. Gorgues, M. Sallé, R.-M. Sebastien, A.-M. Caminade, J.-P. Majoral, Angew. Chem. Int. Ed. 2001, 40, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlyitg%3D%3D&md5=302facc203d9df9517550b41419841c8CAS |
[66] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T.E. Rice, Chem. Rev. 1997, 97, 1515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFSjtbk%3D&md5=2a6287d00a5c27ce70e42c5b4583e063CAS |
[67] B. Valeur, Molecular Fluorescence: Principles and Applications 2002 (Wiley VCH: Weinheim).
[68] A. W. Czarnik, Fluorescent Chemosensors for Ion and Molecule Recognition ACS Symposium Series Vol. 538 1993 (ACS Publications: Washington, DC).
[69] A. T. Wright, E. V. Anslyn, Chem. Soc. Rev. 2006, 35, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlantbnN&md5=9cf25b6a115b84e1743687b014d02956CAS |
[70] T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger, F. M. Pfeffer, Coord. Chem. Rev. 2006, 250, 3094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnJ&md5=351e4b8fafedd2e50ad8b56c7b6ade0bCAS |
[71] A. N. Shipway, E. Katz, I. Willner, ChemPhysChem 2000, 1, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtV2ktLk%3D&md5=459c2296ddad86f9b2b4352e883fd457CAS |
[72] F. M. Raymo, R. J. Alvarado, S. Giordano, M. A. Celas, J. Am. Chem. Soc. 2003, 125, 2361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyktA%3D%3D&md5=5dabb0e328f68ba0236e92e42cab94b1CAS |
[73] J. T. C. Wojtyk, P. M. Kazmaier, E. Buncel, Chem. Commun. 1998, 1703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVCitL4%3D&md5=a79c05f3835af1480f56c81e39451ec9CAS |
[74] S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo, F. M. Raymo, M. Baroncini, A. Credi, J. Am. Chem. Soc. 2007, 129, 13378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKhtbbE&md5=45c1b5c35802950cf3316bdd8c452e1cCAS |
[75] S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves, E. L. Dunphy, M. Tomasulo, F. M. Raymo, A. Credi, Chemistry 2009, 15, 178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVOnsw%3D%3D&md5=7dc8fdd65f4b02a65ea67faba6d69f01CAS |
[76] K. Szacilowski, Chem. Rev. 2008, 108, 3481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2gs7s%3D&md5=e048290af744444a4a53a39e9e867128CAS |
[77] V. Balzani, A. Credi, M. Venturi, ChemPhysChem 2003, 4, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVCktA%3D%3D&md5=d78af65c93b867bd0c5607426d8e9d8eCAS |
[78] F. M. Raymo, Adv. Mater. 2002, 14, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVKhsrg%3D&md5=b660ea667e7b82dd6b592b5dc019a9e6CAS |
[79] A. P. de Silva, Chem. Asian J. 2011, 6, 750.
| Crossref | GoogleScholarGoogle Scholar |
[80] J. Andréasson, U. Pischel, Chem. Soc. Rev. 2010, 39, 174.
| Crossref | GoogleScholarGoogle Scholar |
[81] M. Cantuel, C. Lincheneau, T. Buffeteau, L. Jonusauskaite, T. Gunnlaugsson, G. Jonusauskas, N. D. McClenaghan, Chem. Commun. 2010, 46, 2486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Gnur0%3D&md5=3a548270f233d6e5ce072a47d4407f6fCAS |
[82] S. Uchiyama, G. D. McClean, K. Iwai, A. P. de Silva, J. Am. Chem. Soc. 2005, 127, 8920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2mtrs%3D&md5=00b9dfc7819eedb5bea7c71482f4ee14CAS |
[83] K. A. McNitt, K. Parimal, A. I. Share, A. C. Fahrenbach, E. H. Witlicki, M. Pink, D. K. Bediako, C. L. Plisier, N. Le, L. P. Heeringa, D. A. V. Griend, A. H. Flood, J. Am. Chem. Soc. 2009, 131, 1305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOrtg%3D%3D&md5=e74b0f8375c724786efb6edccd724995CAS |
[84] V. E. Campbell, X. de Hatten, N. Delsuc, B. Kauffmann, I. Huc, J. R. Nitschke, Nat. Chem. 2010, 2, 684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1aktr4%3D&md5=b567db054b50dfa652c87e5f01a33a23CAS |