Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Packing Effect on the Transfer Integrals and Mobility in α,α′-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT) and its Heteroatom-Substituted Analogues

Ahmad Irfan A D , Abdullah G. Al-Sehemi A , Shabbir Muhammad B and Jingping Zhang C
+ Author Affiliations
- Author Affiliations

A Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.

B Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan.

C Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

D Corresponding author. Email: irfaahmad@gmail.com

Australian Journal of Chemistry 64(12) 1587-1592 https://doi.org/10.1071/CH11162
Submitted: 27 April 2011  Accepted: 6 October 2011   Published: 17 November 2011

Abstract

Theoretically calculated mobility has revealed that BDT is a hole transfer material, which is in good agreement with experimental investigations. The BDT, NHBDT, and OBDT are predicted to be hole transfer materials in the C2/c space group. Comparatively, hole mobility of BHBDT is 7 times while electron mobility is 20 times higher than the BDT. The packing effect for BDT and designed crystals was investigated by various space groups. Generally, mobility increases in BDT and its analogues by changing the packing from space group C2/c to space groups P1 or CH11162_IE1.gif. In the designed ambipolar material, BHBDT hole mobility has been predicted 0.774 and 3.460 cm2 Vs–1 in space groups P1 and CH11162_IE1.gif, which is 10 times and 48 times higher than BDT (0.075 and 0.072 cm2 Vs–1 in space groups P1 and CH11162_IE1.gif), respectively. Moreover, the BDT behaves as an electron transfer material by changing the packing from the C2/c space group to P1 and CH11162_IE1.gif.


References

[1]  R. G. Kepler, Phys. Rev. 1960, 119, 1226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXosVA%3D&md5=a96c7416fd1fd01d047b57b5d18aa397CAS |

[2]  O. H. LeBlanc, J. Chem. Phys. 1961, 35, 1275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkt12gsw%3D%3D&md5=b6cbaf504ca1724a0263abb6a918f575CAS |

[3]  (a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Sru7o%3D&md5=87be748b06e8c1fcf8529d805c4e16beCAS |
      (b) J. G. Laquindanum, H. E. Katz, A. J. Lovinger, J. Am. Chem. Soc., 1998, 120, 664.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Li, H. E. Katz, A. J. Lovinger, J. G. Laquindanum, Chem. Mater. 1999, 11, 458.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Slegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature 2000, 404, 478.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. Meng, Z. Bao, A. J. Lovinger, B.-C. Wang, A. M. Mujsce, J. Am. Chem. Soc. 2001, 123, 9214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtF2mu7w%3D&md5=52f3d9f3899b5bebf7d19776380b3067CAS |

[5]  J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Olurg%3D&md5=682c548ef798ad18c8cbe7dd25090da2CAS |

[6]  X. C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, J. Am. Chem. Soc. 1998, 120, 2206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFShu7c%3D&md5=0d2b3699939784a6a666c233316b9eaeCAS |

[7]  W. Q. Deng, W. A. Goddard , J. Phys. Chem. B 2004, 108, 8614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGrtbg%3D&md5=c124813625a85ec5ee5856db4f69b764CAS |

[8]  Y. B. Song, C. A. Di, X. D. Yang, S. P. Li, W. Xu, Y. Q. Liu, L. M. Yang, Z. G. Shuai, D. Q. Zhang, D. B. Zhu, J. Am. Chem. Soc. 2006, 128, 15940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GjsLnF&md5=e58a90f72460bd894a1bd223f25661c5CAS |

[9]  L. B. Schein, A. R. McGhie, Phys. Rev. B 1979, 20, 1631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtVaktbc%3D&md5=b939fb308aa15893e92d7832e323e20aCAS |

[10]  R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslaksro%3D&md5=09778c09e967371a64ada887aac05192CAS |

[11]  R. A. Marcus, Rev. Mod. Phys. 1993, 65, 599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVGns7o%3D&md5=b877ad15338919f0dfa7d9d2dd725f8bCAS |

[12]  J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. USA 2002, 99, 5804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWgt70%3D&md5=232d2d3424cb66f1882e55d4d8a9613eCAS |

[13]  A. van Langevelde, P. Capkova, E. Sonneveld, H. Schenk, M. Trchova, M. Ilavsky, J. Synchrotron Radiat. 1999, 6, 1035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yqtbk%3D&md5=a2ba304d851c058632dbb4c4e1a4020dCAS |

[14]  Y. H. Liu, Y. Xie, Z. Y. Lu, Chem. Phys. 2010, 367, 160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Krsr4%3D&md5=4d52f2c5c3dc9de45e7864d1303263b4CAS |

[15]  M. S. Modeling, Release 3.0.1 2004 (Accelrys Inc.: San Diego, CA).

[16]  (a) J. X. Liu, M. Dong, Z. F. Qin, J. G. Wang, J. Mol. Struc.-Theochem. 2004, 679, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Cks78%3D&md5=48bcf5ed109aa0e113f0a7c3d44ef070CAS |
      (b) E. Klemm, J. G. Wang, G. Emig, Micropor. Mesopor. Mat. 1998, 26, 11.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. R. Fried, S. Weaver, Comput. Mater. Sci. 1998, 11, 277.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Irfan, J. Zhang, Y. Chang, Theor. Chem. Acc. 2010, 127, 587.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) X. Yang, Q. Li, Z. Shuai, Nanotechnology 2007, 18, 424029.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. L. Wang, F. H. Wang, X. D. Yang, Q. K. Li, Z. G. Shuai, Org. Electron. 2008, 9, 635.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. J. Kwiatkowski, J. Nelson, H. Li, J. L. Bredas, W. Wenzel, C. Lennartzd, Phys. Chem. Chem. Phys. 2008, 10, 1852.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowki, , B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03 2004 (Gaussian, Inc.: Wallingford, CT).