Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells
Fuzhi Huang A B , Yi-Bing Cheng B and Rachel A. Caruso A C DA PFPC, School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Department of Materials Engineering, Monash University, Melbourne, Vic. 3800, Australia.
C CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Vic. 3169, Australia.
D Corresponding author. Email: rcaruso@unimelb.edu.au
Associate Professor Rachel A. Caruso is currently an ARC Future Fellow with research groups in the School of Chemistry, The University of Melbourne and the division of Materials Science and Engineering, CSIRO. The focus of her research is the synthesis, characterization, and application of highly porous materials. Rachel completed her PhD at The University of Melbourne and worked as a postdoctoral fellow and then group leader in Germany before returning to Australia. |
Australian Journal of Chemistry 64(6) 820-824 https://doi.org/10.1071/CH11031
Submitted: 18 January 2011 Accepted: 25 March 2011 Published: 27 June 2011
Abstract
Porous aluminium doped TiO2 was prepared through a sol–gel process in the presence of a template. The doping enlarges the band-gap of the anatase TiO2, which modifies the TiO2 electrical properties. The porous Al/TiO2 films were assembled into dye-sensitized solar cells. A 45 mV enhancement of open-circuit photovoltage and 11% increase of fill factor at 2 wt-% doping concentration, and 8.6% improvement of the overall efficiency at 0.5 wt-% doping concentration were achieved relative to that of a cell containing non-doped TiO2 under the same conditions. This advance is attributed to the increase in conductivity with the Al-doping of the TiO2 electrode.
References
[1] B. O’Regan, M. Grätzel, Nature 1991, 353, 737.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XoslOn&md5=f3fa215e5567c017551e165349df422fCAS |
[2] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2003, 2, 402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1ars70%3D&md5=5573fcfc429e3a810ba98e1c7b8d3553CAS | 12754500PubMed |
[3] S. Hore, C. Vetter, R. Kerna, H. Smit, A. Hinsch, Sol. Energy Mater. Sol. Cells 2006, 90, 1176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1egsrs%3D&md5=6ab926fd1bee9631fe395ce2a8e4d34cCAS |
[4] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, J. A. M. van Roosmalen, J. Phys. Chem. B 2006, 110, 19191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFGhsL0%3D&md5=65f1f00954b48e3ac85f2e36ebdf5b36CAS | 17004768PubMed |
[5] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVeku7o%3D&md5=9ad35c12ce28c9010cb77096c42e4d0dCAS |
[6] X. Y. Li, N. J. Long, J. N. Clifford, C. J. Campbell, J. R. Durrant, New J. Chem. 2002, 26, 1076.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFSrsL0%3D&md5=d26a4f9e6a7d3a2d0977318bd87e9b9bCAS |
[7] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, J. Phys. Chem. B 1997, 101, 2576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVCjsr8%3D&md5=5187ff1ac7c8821543fbdc49007da37dCAS |
[8] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir 2004, 20, 4205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFemu70%3D&md5=1ebab360d182e1e25f551755253edb8cCAS | 15969418PubMed |
[9] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, J. Phys. Chem. B 2003, 107, 14336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOrs7w%3D&md5=bb8a91ca58120ff66487e9c8a93db37fCAS |
[10] H. Kusama, H. Arakawa, J. Photochem. Photobiol. Chem. 2004, 162, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Gjs74%3D&md5=8b953041dd84a8bd999274144a67e418CAS |
[11] H. Kusama, H. Arakawa, J. Photochem. Photobiol. Chem. 2004, 164, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFOjsrY%3D&md5=21f107391edfcbf6f7c8dedad04857f7CAS |
[12] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 2001, 70, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFWjurk%3D&md5=649bf8a70befcc90e2aba702cf3b34f4CAS |
[13] Handbook of Photochemistry, Photobiology Vol. 1: Inorganic Photochemistry 2003 (Ed. H. S. Nalwa) (American Scientific Publishers: Los Angeles, USA).
[14] Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, S. A. Akbar, Sens. Actuators B Chem. 2007, 124, 111.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. Hatta, M. Higuchi, J. Takahashi, K. Kodaira, J. Cryst. Growth 1996, 163, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlGrsb8%3D&md5=d34e0819b4e3ebf7c15e2439a0ba827cCAS |
[16] I. Sayago, J. Gutiérrez, L. Arés, J. I. Robla, M. C. Horrillo, J. Getino, J. Rino, J. A. Agapito, Sens. Actuators B Chem. 1995, 26, 19.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. E. Lee, S.-M. Oh, D.-W. Park, Thin Solid Films 2004, 457, 230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVajsLk%3D&md5=b54ebbf029e36ac4226e1c80ba02c634CAS |
[18] F. Z. Huang, M. F. Zhou, Y.-B. Cheng, R. A. Caruso, Chem. Mater. 2006, 18, 5835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ntLfK&md5=c9993fe6d329e35304b3c4b2f207d595CAS |
[19] J. F. Zhou, M. F. Zhou, R. A. Caruso, Langmuir 2006, 22, 3332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Cisrs%3D&md5=074707bc3e3e37afb3b441d91c8880e0CAS | 16548597PubMed |
[20] R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato, P. Maletzky, Catal. Today 1999, 53, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFajsrg%3D&md5=775055086b8fd7111da976f7697192f8CAS |
[21] R. Rodriguez-Talavera, S. Vargas, R. Arroyo-Murillo, R. Montiel-Campos, E. Haro-Poniatowski, J. Mater. Res. 1997, 12, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtV2lsbs%3D&md5=285c3a7cabd165b484409eeccc4ad90fCAS |
[22] J. Yahia, Phys. Rev. 1963, 130, 1711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVSksrg%3D&md5=ef8179632ba7ba343c0ef94a1196f5bfCAS |
[23] A. Zaban, A. Meier, B. A. Gregg, J. Phys. Chem. B 1997, 101, 7985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFWisrg%3D&md5=6da958c79f032b8b3da893697fb8cde6CAS |
[24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVeku7o%3D&md5=9ad35c12ce28c9010cb77096c42e4d0dCAS |
[25] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, Chem. Commun. 2002, 1464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFKmsr0%3D&md5=ccd63431a641a73e4cf1670dde51fea7CAS |
[26] A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 2003, 4, 859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVegt70%3D&md5=169d3e535933cf79b18d4cb5dcafc3bbCAS | 12961985PubMed |
[27] J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, J. Am. Chem. Soc. 2004, 126, 13550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslGqt7g%3D&md5=fab6726180674c2c1bf7a28e40208b9eCAS | 15479112PubMed |