Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Dye-sensitized Solar Cell Application of Polyolefinic Aromatic Molecules with Pyrene as Surface Group

Perumal Rajakumar A C , Kathiresan Visalakshi A , Shanmugam Ganesan B , Pichai Maruthamuthu B and Samuel Austin Suthanthiraraj B
+ Author Affiliations
- Author Affiliations

A Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai – 600 025, India.

B Department of Energy, University of Madras, Guindy Campus, Chennai – 600 025, India.

C Corresponding author. Email: perumalrajakumar@gmail.com

Australian Journal of Chemistry 64(7) 951-956 https://doi.org/10.1071/CH10434
Submitted: 30 November 2010  Accepted: 14 April 2011   Published: 19 July 2011

Abstract

Synthesis of polyolefinic aromatic molecules with pyrene as the surface group, and their role as an additive in the redox couple of dye-sensitized solar cells, is described. The studies yield a promising power conversion efficiency of 5.27% with a short circuit current density of 6.50 mA cm–2, an open circuit voltage of 0.60 V, and a fill factor of 0.54 under 40 mW cm–2 simulated air mass (A.M.) 1.5 illumination. Most importantly, the photocurrent responsivity increases with an increase in the number of pyrene units on the surface.


References

[1]  R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVOhsA%3D%3D&md5=20f75e261c28275b1c398193fac0c955CAS |

[2]  H. E. Katz, Z. N. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1CqtL4%3D&md5=38b27c1fee1e5c36c6c0a8cd82ab5cf7CAS |

[3]  C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVCgtr4%3D&md5=6ba0bd8bbf8324c57d79e44c5a5f9024CAS |

[4]  B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XoslOn&md5=f3fa215e5567c017551e165349df422fCAS |

[5]  M. Grätzel, Nature 2001, 414, 338.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) A. Hagfeldt, M. Grätzel, Chem. Rev. 1995, 95, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qtbc%3D&md5=c03c92af4c04d30617cf0ddab21a542bCAS |
      (b) A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, Chem. Soc. Rev. 2000, 29, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsV2jsbc%3D&md5=7369662691307d504101129d60ef5619CAS |

[8]  I. Montanari, J. Nelson, J. R. Durrant, J. Phys. Chem. B 2002, 106, 12203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVWlsbk%3D&md5=eae5d8a095bcef31fdd76d7a11a91c27CAS |

[9]  J. R. Lakowicz, in Principles of Fluorescence Spectroscopy 1999 (Plenum Press: New York, NY).

[10]  C. Tang, F. Liu, Y. J. Xia, J. Lin, L. H. Xie, G. Y. Zhong, Q. L. Fan, W. Huang, Org. Electron. 2006, 7, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFejsrc%3D&md5=285be5478199fa547aa53aef0ded68edCAS |

[11]  H. Shimizu, K. Fujimoto, M. Furusyo, H. Maeda, Y. Nanai, K. Mizuno, M. Inouye, J. Org. Chem. 2007, 72, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFentg%3D%3D&md5=075d4dc18aa3c2971e39db7b7425f50fCAS |

[12]  O. Taratula, J. Rochford, P. Piotrowiak, E. Galoppini, R. A. Carlisle, G. J. Meyer, J. Phys. Chem. B 2006, 110, 15734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2gsLY%3D&md5=6862c0f3ec4c3492de0ca33af7726615CAS |

[13]  H. Ji, T. Mizugaki, K. Ebitani, K. Kaneda, Tetrahedron Lett. 2002, 43, 7179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns12is74%3D&md5=53ab2bdfcac0351ef5f0ec67a002111bCAS |

[14]  A. N. Fletcher, Photochem. Photobiol. 1969, 9, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlCrsLw%3D&md5=97ce7e60d37dda9ee290c098de4d0dc1CAS |

[15]  G. Schlithrol, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8139.

[16]  (a) O. Enea, J. Moser, M. Gratzel, J. Electroanal. Chem. 1989, 259, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1ens7k%3D&md5=623497077d0897e66a40e4a7d9f35c45CAS |
      (b) S. Ferrere, B. Gregg, New J. Chem. 2002, 26, 1155.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Ganesan, B. Muthuraaman, J. Madhavan, P. Maruthamuthu, S. A. Suthanthiraraj, Sol. Energy Mater. Sol. Cells 2008, 92, 1718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1equ7zJ&md5=986f59fa800d00f3e5ccd79299231277CAS |

[18]  D. D. Perrin, W. L. F. Armarego, in Purification of Laboratory Chemicals 1988 (Pergamon Press: Oxford).

[19]  W. Chen, N. B. Zuckerman, J. W. Lewis, J. P. Konopelski, S. Chen, J. Phys. Chem. C 2009, 113, 16988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVyhs73J&md5=acc4deabd4b2bff21245a0887808e18eCAS |