Quantum-Chemical Ab Initio Calculations on Borabenzene (C5H5B) and its Adducts with Ne, Ar, Kr, and N2. Could Free Borabenzene be Observed in Rare Gas Matrices?A
Gerhard Raabe A B and Matthias Baldofski AA Department of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
B Corresponding author. Email: gerd.raabe@thc.rwth-aachen.de
Australian Journal of Chemistry 64(7) 957-964 https://doi.org/10.1071/CH10438
Submitted: 2 December 2010 Accepted: 11 March 2011 Published: 19 July 2011
Abstract
Quantum-chemical calculations employing different theoretical methods and basis sets have been performed on borabenzene (C5H5B) as well as on its adducts to dinitrogen (N2) and the rare gases Ne, Ar, and Kr. In agreement with previous calculations, the ground state of borabenzene was found to be a planar singlet with six electrons in molecular orbitals of π symmetry and a wide C-B-C bond angle (142.2°). Depending on the method (PUMP2, SAC-CI, CASPT2(8,8)), the lowest triplet state was found to be 28 to 46 kcal mol–1 (1 kcal mol–1 = 4.186 kJ mol–1) higher in energy. The energies associated with the formation of the adducts with N2, Ne, Ar, and Kr were calculated as –14.9, –0.5, –1.4, and –3.5 kcal mol–1 respectively. Our calculated spectrum of the normal modes as well as the electronic excitation spectrum of the N2 adduct reproduce qualitatively the characteristic features of the IR and the UV-vis spectra described by experimentalists. The corresponding calculated spectra (normal modes, UV-vis) of the rare gas adducts were found to be very similar to those of free borabenzene.
References
[1] G. Raabe, E. Heyne, W. Schleker, J. Fleischhauer, Z. Naturforsch. A 1984, 39, 678.[2] G. Raabe, W. Schleker, E. Heyne, J. Fleischhauer, Z. Naturforsch. A 1987, 42, 352.
| 1:CAS:528:DyaL2sXitVChsbs%3D&md5=9fce49913bffaafdecc6a057f407f6cbCAS |
[3] J. M. Schulman, R. L. Disch, Organometallics 1989, 8, 733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFCrurk%3D&md5=b9e7d39ff6bb0b1fd2c18fac18a44efcCAS |
[4] J. Cioslowski, P. J. Hay, J. Am. Chem. Soc. 1990, 112, 1707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpvVGqtA%3D%3D&md5=b8c94d8fe153a3aeaca4acc0ff7ee1d7CAS |
[5] P. B. Karadakov, M. Ellis, J. Gerratt, D. L. Cooper, M. Raimondi, Int. J. Quantum Chem. 1997, 63, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVSitr0%3D&md5=bc8f486f9f7abcb7c7d6d439e47b391bCAS |
[6] M. C. Böhm, U. Schmitt, J. Schütt, J. Phys. Chem. 1993, 97, 11427.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. G. Semenov, Yu. F. Sigolaev, Russ. J. Gen. Chem. 2006, 76, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOns7c%3D&md5=800a166f4bc024777a9a2b8503aaad63CAS |
[8] S. G. Semenov, Yu. F. Sigolaev, Russ. J. Gen. Chem. 2006, 76, 1925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFWltLc%3D&md5=114b55d77c819ae6df9dc7aade4bd2b4CAS |
[9] G. Maier, H. P. Reisenauer, J. Henkelmann, C. Kliche, Angew. Chem. Int. Ed. Engl. 1988, 27, 295.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. Boese, N. Finke, J. Henkelmann, G. Maier, P. Paetzold, H. P. Reisenauer, G. Schmid, Chem. Ber. 1985, 118, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlOmsLw%3D&md5=345421adcf3828dbe84c6b8179e846c6CAS |
[11] G. Maier, Pure Appl. Chem. 1986, 58, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXosVKlug%3D%3D&md5=eaba1a254a535ef3120c2529be098354CAS |
[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).
[13] (a) J. Cizek, Adv. Chem. Phys. 1969, 14, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsVCqsr4%3D&md5=19b7fdeaa4fdc5c733957c9a9c8fb84fCAS |
(b) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. E. Scuseria, H. F. Schaefer, J. Chem. Phys. 1989, 90, 3700.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=eb6ca38825069aeaa9d48f0ecd2ae108CAS |
(b) R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. A. Peterson, D. E. Woon, T. H. Dunning, J. Chem. Phys. 1994, 100, 7410.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. K. Wilson, T. van Mourik, T. H. Dunning, J. Mol. Struct. THEOCHEM 1996, 388, 339.
[15] E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold NBO 3.0 Program Manual (Natural Bond Orbital/Natural Population Analysis/Natural Localized Molecular Orbital Programs) Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706.
F. Weinhold, C. Landis, Valence and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective 2005 (Cambridge University Press: Cambridge).
[16] H. Nakatsuji, SAC-CI Method, Theoretical Aspects and Some Recent Topics, in Computational Chemistry (Reviews of Current Trends) 1997, Vol. 2, pp. 62–124 (World Scientific: Singapore).
[17] K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, J. Phys. Chem. 1990, 94, 5483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVKnt74%3D&md5=6a17b8733d4d21ea90359c1af64ac414CAS |
[18] MOLCAS 7.4 G. Karlstroem, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Comput. Mater. Sci. 2003, 28, 222.
[19] J. Almlöf, P. R. Taylor, Adv. Quantum Chem. 1991, 22, 301.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Varyazov, P.-O. Widmark, J. Phys. Chem. A 2004, 108, 2851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGksLs%3D&md5=1a23004b29e09438618d5026302eb150CAS |
[21] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=363cf60d79c2e7b16a6e0b9ede98b4f7CAS |
[22] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=1620347e41220476771af9b117ee8e30CAS |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Brown, C. M. Kemp, S. F. Mason, J. Chem. Soc. A 1971, 751.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) H. B. Schlegel, J. Phys. Chem. 1988, 92, 3075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1OjsLs%3D&md5=583fd9223c2729b8a29cefc27c8d24adCAS |
(b) P. J. Knowles, N. C. Handy, J. Phys. Chem. 1988, 92, 3097.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=062c9d4b536bd1a0176b8697ab31f0c9CAS |
[26] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=3bd1fefd910662044bf9e85065a58830CAS |
[27] J. D. Morrison, Rev. Pure Appl. Chem. 1955, 5, 22.
| 1:CAS:528:DyaG2MXnt1Grug%3D%3D&md5=ad2fdf34d2848b846dc90aa489400cdfCAS |
[28] C. E. Moore, Atomic Energy Levels as Derived From the Analyses of Optical Spectra. Vol. 1. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U.S.) 1971, 35(V), I (U.S. Government Printing Office: Washington, D.C.).
[29] (a) D. G. Truhlar, Chem. Phys. Lett. 1998, 294, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVGjsbg%3D&md5=9886860c5424d775cd227af74a031e44CAS |
(b) P. L. Fast, M. L. Sánchez, D. G. Truhlar, J. Chem. Phys. 1999, 111, 2921.
| Crossref | GoogleScholarGoogle Scholar |