Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Anomalies in the Stereoselectivity of the Petasis Reaction Using Styrenyl Boronic Acids

Quentin I. Churches A , James K. Johnson A , Nathan L. Fifer A and Craig A. Hutton A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic. 3010, Australia.

B Corresponding author. Email: chutton@unimelb.edu.au

Australian Journal of Chemistry 64(1) 62-67 https://doi.org/10.1071/CH10341
Submitted: 14 September 2010  Accepted: 1 December 2010   Published: 14 January 2011

Abstract

The Petasis three-component coupling reaction of N-benzylphenylglycinol, glyoxylic acid, and styrenylboronic acids allows for the efficient synthesis of functionalized homoarylalanine derivatives. The reactions were shown to proceed in high yield but low selectivity, regardless of the nature of the substituent on the styrenylboronic acid component. Anomalies in the stereoselectivity of these reactions compared with previously reported results have been traced to the source of the organoboronic acid. Asymmetric dihydroxylation of the unsaturated amino acid derivatives enables a highly efficient route to dihydroxyhomoarylalanine derivatives.


References

[1]  Selander  N., Szabó  K. J., Asymmetric Synthesis and Application of α-Amino Acids 2009, Vol. 1009, Ch. 12, pp. 190–202 (Eds V. A. Soloshonok, K. Izawa) (ACS Symposium Series: Washington, DC).

[2]  Boronic Acids – Preparation, Applications in Organic Synthesis and Medicine 2005 (Ed. D. G. Hall) (Wiley-VCH: Weinheim).

[3]  N. R. Candeias, L. F. Veiros, C. A. M. Afonso, P. M. P. Gois, Eur. J. Org. Chem. 2009, 1859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOju74%3D&md5=db0cdeaf642681b73c36f380081c8e12CAS |

[4]  P. F. Kaiser, Q. I. Churches, C. A. Hutton, Aust. J. Chem. 2007, 60, 799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisb%2FI&md5=3a9a1c16159ede279d33b4c154653e4dCAS |

[5]  N. A. Petasis, Aust. J. Chem. 2007, 60, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisb7E&md5=3c6475faed76e93a7972ad74a1f10376CAS |

[6]  N. A. Petasis, A. Goodman, I. A. Zavialov, Tetrahedron 1997, 53, 16463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1WgsLo%3D&md5=3d811ffa0badc633a6439068f665104bCAS |

[7]  N. A. Petasis, I. A. Zavialov, J. Am. Chem. Soc. 1997, 119, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFejurw%3D&md5=f4a1ef350876c0c14bed9bcf1c5274f4CAS |

[8]  B. Jiang, C.-G. Yang, X.-H. Gu, Tetrahedron Lett. 2001, 42, 2545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVOjsrY%3D&md5=8df69f10fa10a142a4b002ac24e3339bCAS |

[9]  K. K. Nanda, B. W. Trotter, Tetrahedron Lett. 2005, 46, 2025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs12ns70%3D&md5=63ebe67f7513a6c4f9a85cdea85fa120CAS |

[10]  T. J. Southwood, M. C. Curry, C. A. Hutton, Tetrahedron 2006, 62, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12qsLfL&md5=0248fff3cb27a04b64f74e563482e7d9CAS |

[11]  N. A. Petasis, Z. D. Patel, Tetrahedron Lett. 2000, 41, 9607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFOmsbw%3D&md5=32a91a6afb877c79278d233146e4518eCAS |

[12]  Q. I. Churches, H. E. Stewart, S. B. Cohen, A. Shröder, P. Turner, C. A. Hutton, Pure Appl. Chem. 2008, 80, 687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ju7k%3D&md5=5a1ffbe6f5ca4c261f7329d51a61b184CAS |

[13]  B. Jiang, M. Xu, Org. Lett. 2002, 4, 4077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVegtLc%3D&md5=ebab70e117d8e97cbe89719c5c005f07CAS | 12423090PubMed |

[14]  D. W. Denning, J. Antimicrob. Chemother. 2002, 49, 889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyrsLY%3D&md5=35a32a26fcb4226222b50ed6d0456308CAS | 12039879PubMed |

[15]  C. Wagner, W. Graninger, E. Presterl, C. Joukhadar, Pharmacology 2006, 78, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqsrrF&md5=72f1513104fff151979ca2ddf47af5ccCAS | 17047411PubMed |

[16]  C. Palomo, M. Oiarbide, A. Landa, J. Org. Chem. 2000, 65, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVCls78%3D&md5=6b5511f641fb3fdeeff33f4633839790CAS | 10813893PubMed |

[17]  H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVSitrg%3D&md5=28e1863fa464e6bbf99b3fe360cbfcc4CAS |

[18]  L. Wang, K. B. Sharpless, J. Am. Chem. Soc. 1992, 114, 7568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFSlsLs%3D&md5=c634fc9b36bee71f32aa85077d4d80d9CAS |

[19]  R. M. Davey, M. A. Brimble, M. D. McLeod, Tetrahedron Lett. 2000, 41, 5141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWmtrs%3D&md5=c2c43c6617d3f1f051993d6bc7df8e96CAS |