Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Membrane-Based Sensing Approaches

Julia Braunagel A , Ann Junghans A and Ingo Köper A B C
+ Author Affiliations
- Author Affiliations

A Max Planck Institute for Polymer Research, 55128 Mainz, Germany.

B School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5001, Australia.

C Corresponding author. Email: ingo.koeper@flinders.edu.au

Australian Journal of Chemistry 64(1) 54-61 https://doi.org/10.1071/CH10347
Submitted: 20 September 2010  Accepted: 19 October 2010   Published: 14 January 2011

Abstract

Tethered bilayer lipid membranes can be used as model platforms to host membrane proteins or membrane-active peptides, which can act as transducers in sensing applications. Here we present the synthesis and characterization of a valinomycin derivative, a depsipeptide that has been functionalized to serve as a redox probe in a lipid bilayer. In addition, we discuss the influence of the molecular structure of the lipid bilayer on its ability to host proteins. By using electrical impedance techniques as well as neutron scattering experiments, a clear correlation between the packing density of the lipids forming the membrane and its ability to host membrane proteins could be shown.


References

[1]  B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, R. J. Pace, Nature 1997, 387, 580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFCitL4%3D&md5=b4ca06f7b56c3337c607c33d89b867b8CAS | 9177344PubMed |

[2]  M. Winterhalter, Curr. Opin. Colloid Interface Sci. 2000, 5, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKjur8%3D&md5=a69d28a299e963167b876d74503daacbCAS |

[3]  G. M. Bell, L. L. Combs, L. J. Dunne, Chem. Rev. 1981, 81, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpvVSjuw%3D%3D&md5=3f784eaef3d43d47618599856ea64dd2CAS |

[4]  A. Ottova, V. Tvarozek, J. Racek, J. Sabo, W. Ziegler, T. Hianik, H. T. Tien, Supramol. Sci. 1997, 4, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitV2htL0%3D&md5=de4ffb9d8ceb5c85baac0b23a8ebe52dCAS |

[5]  E. Sackmann, Science 1996, 271, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFWmtA%3D%3D&md5=dec3cf4faaac55426974b6a15894c10eCAS | 8539599PubMed |

[6]  C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, H.-J. Galla, Biochim. Biophys. Acta 1996, 1279, 169.
         | Crossref | GoogleScholarGoogle Scholar | 8603084PubMed |

[7]  W. Knoll, C. W. Frank, C. Heibel, R. Naumann, A. Offenhäuser, J. Rühe, E. K. Schmidt, W. W. Shen, A. Sinner, Rev. Mol. Biotechnol. 2000, 74, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVyitLw%3D&md5=dcdbf1fe07af24229212eced0d2e6c2cCAS |

[8]  A. E. Vallejo, C. A. Gervasi, Bioelectrochem 2002, 57, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFynsbs%3D&md5=6700bdfe7a8ee53e66eb963f15207fa2CAS |

[9]  E. Sackmann, Science 1996, 271, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFWmtA%3D%3D&md5=dec3cf4faaac55426974b6a15894c10eCAS | 8539599PubMed |

[10]  J. Spinke, J. Yang, H. Wolf, M. Liley, H. Ringsdorf, W. Knoll, Biophys. J. 1992, 63, 1667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFSgtrY%3D&md5=91e8b0e24cce29b10bf5c8834bd11404CAS | 19431869PubMed |

[11]  L. K. Tamm, H. M. McConnell, Biophys. J. 1985, 47, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXnsVClsw%3D%3D&md5=a287be7fc7db7c601c1ed65d633a3421CAS | 3978184PubMed |

[12]  M. Winterhalter, Curr. Opin. Colloid Interface Sci. 2000, 5, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKjur8%3D&md5=a69d28a299e963167b876d74503daacbCAS |

[13]  N. Fertig, A. Tilke, R. H. Blick, J. P. Kotthaus, J. C. Behrends, G. ten Bruggencate, Appl. Phys. Lett. 2000, 77, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslGgur4%3D&md5=4946ac8d734d0bdcaf10a4396175e3a9CAS |

[14]  T. J. Jeon, N. Malmstadt, J. J. Schmidt, J. Am. Chem. Soc. 2006, 128, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yrs73F&md5=369b548ca4bf3108bd81530af0625043CAS | 16390112PubMed |

[15]  I. K. Vockenroth, C. Ohm, J. W. F. Robertson, D. J. McGillivray, M. Lösche, I. Köper, Biointerphases 2008, 3, FA68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVSrsbo%3D&md5=63d155240783d9a1eccc844e4c52797eCAS | 20408671PubMed |

[16]  I. Köper, S. M. Schiller, F. Giess, R. Naumann, W. Knoll, Adv. Planar Lipid Bilayers 2006, 3, 37.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, W. Knoll, Angew. Chem. 2003, 42, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1aksg%3D%3D&md5=e5caae1904b142dace2af2272fdf6e35CAS |

[18]  S. Terrettaz, M. Mayer, H. Vogel, Langmuir 2003, 19, 5567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktl2jt7s%3D&md5=fa4ea75734b9325f694428ea5d5c765eCAS |

[19]  I. K. Vockenroth, P. P. Atanasova, A. T. A. Jenkins, I. Köper, Langmuir 2008, 24, 496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehurnP&md5=af345e7e731a2697572ce6524f6e8d7dCAS | 18085805PubMed |

[20]  C. A. Keller, B. Kasemo, Biophys. J. 1998, 75, 1397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVCru7g%3D&md5=ae5c6ea1d98bb54ee7852f90eeddc72bCAS | 9726940PubMed |

[21]  S. Terrettaz, H. Vogel, MRS Bull. 2005, 30, 207.
         | 1:CAS:528:DC%2BD2MXjtFantLs%3D&md5=2f16727e1c5654b654bfcbd878abcfedCAS |

[22]  R. F. Roskamp, I. K. Vockenroth, N. Eisenmenger, J. Braunagel, I. Köper, ChemPhysChem 2008, 9, 1920.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sru7vF&md5=2aed658bf55c64c14415489c317225beCAS | 18704903PubMed |

[23]  R. Naumann, S. M. Schiller, F. Giess, B. Grohe, K. B. Hartman, I. Karcher, I. Köper, J. Lubben, K. Vasilev, W. Knoll, Langmuir 2003, 19, 5435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVWrtrk%3D&md5=5b6ce3064f660e4e806d92ce99e2381eCAS |

[24]  I. Köper, Mol. Biosyst. 2007, 3, 651.
         | Crossref | GoogleScholarGoogle Scholar | 17882328PubMed |

[25]  I. K. Vockenroth, C. Rossi, M. R. Shah, I. Köper, Biointerphases 2009, 4, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslSmsro%3D&md5=dc76e1b305479d90cba31d5060fda715CAS | 20408719PubMed |

[26]  J. Kunze, J. Leitch, A. L. Schwan, R. J. Faragher, R. Naumann, S. Schiller, W. Knoll, J. R. Dutcher, J. Lipkowski, Langmuir 2006, 22, 5509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVyqsL8%3D&md5=5aeb6377200113faa5f275f1c3c6af58CAS | 16732685PubMed |

[27]  A. Junghans, I. Köper, Langmuir 2010, 26, 11035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1SgsLw%3D&md5=c8793baae5df78ff3ec7feb6a26a6281CAS | 20504013PubMed |

[28]  I. K. Vockenroth, C. Ohm, J. W. F. Robertson, D. J. McGillivray, M. Lösche, I. Köper, Biointerphases 2008, 3, FA68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVSrsbo%3D&md5=63d155240783d9a1eccc844e4c52797eCAS | 20408671PubMed |

[29]  H. Hillebrandt, M. Tanaka, E. Sackmann, J. Phys. Chem. B 2002, 106, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFagt7o%3D&md5=f71ccb33bcb67a706b1b7752b2028b72CAS |

[30]  G. Stark, R. Benz, J. Membr. Biol. 1971, 5, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtlOjs7w%3D&md5=3a7bf2e3deeb04bf43c7eacb1e0d22f0CAS |

[31]  G. Favero, L. Campanella, A. D’Annibale, R. Santucci, T. Ferri, Microchem. J. 2003, 74, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12htrg%3D&md5=5c62e750c9ff7b1602c2f37eaad2f502CAS |

[32]  B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. G. King, P. D. J. Osman, R. J. Pace, L. Wieczorek, Langmuir 1998, 14, 648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1Khtw%3D%3D&md5=9b20640b23b415fb3a7ee478d05fc0d1CAS |

[33]  H. Brockmann, G. Schmidt-Kastner, I. Valinomycin, Chem. Ber. 1955, 88, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXosV2qsQ%3D%3D&md5=54547fdbb38f44b1b2b6c3d791bdf4e6CAS |

[34]  M. M. Schemjakin, Angew. Chem. 1960, 72, 342.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. Rothe, W. Kreiss, Angew. Chem. Int. Ed. Engl. 1973, 12, 1012.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7itFarsA%3D%3D&md5=3224970a7d12055581c930618d189317CAS | 4205988PubMed |

[36]  C. Gilon, Y. Klausner, A. Hassner, Tetrahedron Lett. 1979, 20, 3811.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  B. F. Gisin, A. R. Dhundale, Int. J. Pept. Protein Res. 1979, 14, 356.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsVOiurg%3D&md5=12782631d01cc2193bc03f22262a58fcCAS | 521217PubMed |

[38]  J. Hanzlík, Z. Samec, J. Hovorka, J. Electroanal. Chem. 1987, 216, 303.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  B. Neises, W. Steglich, Angew. Chem. Int. Ed. Engl. 1978, 17, 522.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  R. Naumann, D. Walz, S. M. Schiller, W. Knoll, J. Electroanal. Chem. 2003, 550–551, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz, M. Lösche, J. Phys. Chem. B 2006, 110, 10213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWru7c%3D&md5=fb41eb53d623695be5bc0efd5bc338fcCAS | 16722717PubMed |

[42]  P. P. Atanasova, V. Atanasov, I. Köper, Langmuir 2007, 23, 7672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1artbs%3D&md5=b7dfc61b8d2bf085114320d20fcf936aCAS | 17559241PubMed |

[43]  V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenhäuser, W. Knoll, I. Köper, Biophys. J. 2005, 89, 1780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvF2kurw%3D&md5=b047d46a4066d8adcf7b84544baf7496CAS | 16127170PubMed |

[44]  I. K. Vockenroth, P. P. Atanasova, A. T. A. Jenkins, I. Köper, Langmuir 2008, 24, 496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehurnP&md5=af345e7e731a2697572ce6524f6e8d7dCAS | 18085805PubMed |

[45]  L. H. He, J. W. F. Robertson, J. Li, I. Karcher, S. M. Schiller, W. Knoll, R. Naumann, Langmuir 2005, 21, 11666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKltrfL&md5=327071140a5d720c98deca44184901d7CAS | 16316098PubMed |

[46]  D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz, M. Losche, Biointerphases 2007, 2, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFGrtLg%3D&md5=f8741aa85d26e21ea830e34532704f4dCAS | 20408633PubMed |

[47]  J. A. Dura, D. J. Pierce, C. F. Majkrzak, N. C. Maliszewskyj, D. J. McGillivray, M. Lösche, K. V. O’Donovan, M. Mihailescu, U. Perez-Salas, D. L. Worcester, S. H. White, Rev. Sci. Instrum. 2006, 77, 074301.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  S. Krueger, C. W. Meuse, C. F. Majkrzak, J. A. Dura, N. F. Berk, M. Tarek, A. L. Plant, Langmuir 2001, 17, 511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSjsbo%3D&md5=4d85279ce3c169912a6816634668dbb7CAS |

[49]  B. Schuster, D. Pum, O. Braha, H. Bayley, U. B. Sleytr, Biochim. Biophys. Acta 1998, 1370, 208.

[50]  S. Cheley, M. S. Malghani, L. Song, M. Hobaugh, J. E. Gouaux, J. Yang, H. Bayley, Protein Eng. 1997, 10, 1433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVWhs7s%3D&md5=4d978e0366459e477cef78da58fa5347CAS | 9543005PubMed |