Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Unlocking therapeutic potential: the role of adamantane in drug discovery

Chianna Dane A , Grace A. Cumbers https://orcid.org/0009-0002-3723-9114 A , Beau Allen A , Andrew P. Montgomery https://orcid.org/0000-0002-1819-3619 A , Jonathan J. Danon https://orcid.org/0000-0001-6242-1941 A and Michael Kassiou https://orcid.org/0000-0002-6655-0529 A *
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.

* Correspondence to: michael.kassiou@sydney.edu.au

Handling Editor: Curt Wentrup

Australian Journal of Chemistry 77, CH24075 https://doi.org/10.1071/CH24075
Submitted: 30 May 2024  Accepted: 12 July 2024  Published online: 2 August 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The unique structural and physicochemical properties of adamantane and its derivatives have attracted considerable attention in the field of medicinal chemistry. Substituting phenyl rings for adamantane or its derivatives has provided a promising strategy to introduce lipophilicity and escape the ‘flat land’ of modern drug discovery. Additionally, the unique three-dimensional structure of adamantane facilitates the precise positioning of substituents allowing for a more effective exploration of drug targets. Evidently, we have seen an increased use of adamantane in pharmaceutically relevant molecules. The following Account highlights our group’s research in five drug discovery programs over the past 15 years showcasing the use of adamantane and its analogues in these studies.

Keywords: adamantane, cannabinoid receptors, CNS, medicinal chemistry, NMDA receptor, P2X7 receptor, sigma-2 receptor, structure–activity relationships, tau aggregation.

References

Landa S, Macháček V. Sur l’adamantane, nouvel hydrocarbure extrait du naphte. Collect Czechoslov Chem Commun 1933; 5: 1-5 [In French].
| Crossref | Google Scholar |

Sekutor M, Fokin AA, Schreiner PR. The Chemistry of Diamondoids: Building Blocks for Ligands, Catalysts, Pharmaceuticals, and Materials. Germany: Wiley-VCH GmbH; 2024.

Prelog V, Seiwerth R. Über die Synthese des Adamantans. Ber Dtsch Chem Ges 1941; 74(10): 1644-1648 [In German].
| Crossref | Google Scholar |

von R, Schleyer P. A simple preparation of adamantane. J Am Chem Soc 1957; 79(12): 3292.
| Crossref | Google Scholar |

Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113(5): 3516-3604.
| Crossref | Google Scholar | PubMed |

Jackson GG, Muldoon RL, Akers LW. Serological evidence for prevention of influenzal infection in volunteers by an anti-influenzal drug adamantanamine hydrochloride. Antimicrob Agents Chemother 1963; 161: 703-707.
| Google Scholar | PubMed |

Liu J, Obando D, Liao V, Lifa T, Codd R. The many faces of the adamantyl group in drug design. Eur J Med Chem 2011; 46(6): 1949-1963.
| Crossref | Google Scholar | PubMed |

Lamoureux G, Artavia G. Use of the adamantane structure in medicinal chemistry. Curr Med Chem 2010; 17(26): 2967-2978.
| Crossref | Google Scholar | PubMed |

Gryn’ova G, Corminboeuf C. Steric “attraction”: not be dispersion alone. Beilstein J Org Chem 2018; 14: 1482-1490.
| Crossref | Google Scholar | PubMed |

10  Rummel L, Schreiner PR. Advances and prospects in understanding london dispersion interactions in molecular chemistry. Angew Chem Int Ed 2024; 63(12): e202316364.
| Crossref | Google Scholar | PubMed |

11  Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, et al. Nonclassical phenyl bioisosteres as effective replacements in a series of novel open-source antimalarials. J Med Chem 2020; 63(20): 11585-11601.
| Crossref | Google Scholar | PubMed |

12  Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm 2024; 357(3): 2300595.
| Crossref | Google Scholar | PubMed |

13  Pergolizzi J, Varrassi G, Coleman M, Breve F, Christo DK, Christo PJ, et al. The sigma enigma: a narrative review of sigma receptors. Cureus 2023; 15(3): e35756.
| Crossref | Google Scholar | PubMed |

14  Pergolizzi Jr J, Varrassi G. The emerging role of sigma receptors in pain medicine. Cureus 2023; 15(7): e42626.
| Crossref | Google Scholar | PubMed |

15  Piechal A, Jakimiuk A, Mirowska-Guzel D. Sigma receptors and neurological disorders. Pharmacol Rep 2021; 73(6): 1582-1594.
| Crossref | Google Scholar | PubMed |

16  Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E. Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 2004; 19(8): 2212-2220.
| Crossref | Google Scholar | PubMed |

17  Kassiou M, Nguyen VH, Knott R, Christie MJ, Hambley TW. Trishomocubanes, a new class of selective and high affinity ligands for the sigma binding site. Bioorg Med Chem Lett 1996; 6(6): 595-600.
| Crossref | Google Scholar |

18  Nguyen VH, Kassiou M, Johnston GAR, Christie MJ. Comparison of binding parameters of σ1 and σ2 binding sites in rat and guinea pig brain membranes: novel subtype-selective trishomocubanes. Eur J Pharmacol 1996; 311(2): 233-240.
| Crossref | Google Scholar |

19  Liu X, Kassiou M, Christie MJ. Synthesis and binding studies of trishomocubanes: novel ligands for σ binding sites. Aust J Chem 1999; 52(7): 653-656.
| Crossref | Google Scholar |

20  Liu X, Kassiou M, Christie MJ, Hambley TW. Trishomocubanes: requirements for σ receptor binding and subtype selectivity. Aust J Chem 2001; 54(1): 31-36.
| Crossref | Google Scholar |

21  Banister SD, Moussa IA, Jordan MJT, Coster MJ, Kassiou M. Oxo-bridged isomers of aza-trishomocubane sigma (σ) receptor ligands: synthesis, in vitro binding, and molecular modeling. Bioorg Med Chem Lett 2010; 20(1): 145-148.
| Crossref | Google Scholar | PubMed |

22  Glennon RA, Ablordeppey SY, Ismaiel AM, El-Ashmawy MB, Fischer JB, Howie KB. Structural features important for sigma1 receptor binding. J Med Chem 1994; 37(8): 1214-1219.
| Crossref | Google Scholar | PubMed |

23  Banister SD, Yoo DT, Chua SW, Cui J, Mach RH, Kassiou M. N-Arylalkyl-2-azaadamantanes as cage-expanded polycarbocyclic sigma (σ) receptor ligands. Bioorg Med Chem Lett 2011; 21(18): 5289-5292.
| Crossref | Google Scholar | PubMed |

24  Banister SD, Rendina LM, Kassiou M. 7-Azabicyclo[2.2.1]heptane as a scaffold for the development of selective sigma-2 (σ2) receptor ligands. Bioorg Med Chem Lett 2012; 22(12): 4059-4063.
| Crossref | Google Scholar | PubMed |

25  Beinat C, Banister S, Moussa I, Reynolds AJ, McErlean CSP, Kassiou M. Insights into structure–activity relationships and CNS therapeutic applications of NR2B selective antagonists. Curr Med Chem 2010; 17(34): 4166-4190.
| Crossref | Google Scholar | PubMed |

26  Beinat C, Banister SD, Hoban J, Tsanaktsidis J, Metaxas A, Windhorst AD, et al. Structure–activity relationships of N-substituted 4-(trifluoromethoxy)benzamidines with affinity for GluN2B-containing NMDA receptors. Bioorg Med Chem Lett 2014; 24(3): 828-830.
| Crossref | Google Scholar | PubMed |

27  Warraich ST, Allbutt HN, Billing R, Radford J, Coster MJ, Kassiou M, et al. Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res Bull 2009; 78(2): 85-90.
| Crossref | Google Scholar | PubMed |

28  Truong L, Allbutt HN, Coster MJ, Kassiou M, Henderson JM. Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA + parafascicular lesions. Brain Res Bull 2009; 78(2): 91-96.
| Crossref | Google Scholar | PubMed |

29  Liu W, Jiang X, Zu Y, Yang Y, Liu Y, Sun X, et al. A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200: 112447.
| Crossref | Google Scholar |

30  Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12(3): 529-540.
| Crossref | Google Scholar | PubMed |

31  Claiborne CF, McCauley JA, Libby BE, Curtis NR, Diggle HJ, Kulagowski JJ, et al. Orally efficacious NR2B-selective NMDA receptor antagonists. Bioorg Med Chem Lett 2003; 13(4): 697-700.
| Crossref | Google Scholar | PubMed |

32  2024 Alzheimer’s disease facts and figures. Alzheimers Dement 2024; 20(5): 3708-3821.
| Crossref | Google Scholar | PubMed |

33  Long S, Benoist C, Weidner W. World Alzheimer Report 2023: Reducing dementia risk: never too early, never too late. London, UK: Alzheimer’s Disease International; 2023.

34  Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer’s disease: recent developments. Antioxidants 2022; 11(12): 2402.
| Crossref | Google Scholar | PubMed |

35  Crowe A, Huang W, Ballatore C, Johnson RL, Hogan AML, Huang R, et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 2009; 48(32): 7732-7745.
| Crossref | Google Scholar | PubMed |

36  Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29(9): 2187-2199.
| Crossref | Google Scholar | PubMed |

37  Ballatore C, Crowe A, Piscitelli F, James M, Lou K, Rossidivito G, et al. Aminothienopyridazine inhibitors of tau aggregation: evaluation of structure–activity relationship leads to selection of candidates with desirable in vivo properties. Bioorg Med Chem 2012; 20(14): 4451-4461.
| Crossref | Google Scholar | PubMed |

38  Moir M, Chua SW, Reekie T, Martin AD, Ittner A, Ittner LM, et al. Ring-opened aminothienopyridazines as novel tau aggregation inhibitors. MedChemComm 2017; 8(6): 1275-1282.
| Crossref | Google Scholar | PubMed |

39  Kendall DA, Yudowski GA. Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Front Cell Neurosci 2017; 10: 294.
| Crossref | Google Scholar | PubMed |

40  Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 2008; 20: 10-14.
| Crossref | Google Scholar | PubMed |

41  United Nations Office on Drugs and Crime. Current NPS Threats Volume VII July 2024. Vienna, Austria: United Nations; 2024. Available at https://www.unodc.org/documents/scientific/Current_NPS_threats_VII.pdf

42  Banister SD, Connor M The chemistry and pharmacology of synthetic cannabinoid receptor agonist new psychoactive substances: evolution. In: Maurer HH, Brandt SD, editors. New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology. Cham, Switzerland: Springer International Publishing; 2018. pp. 191–226. 10.1007/164_2018_144

43  Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, et al. The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 2013; 4(7): 1081-1092.
| Crossref | Google Scholar | PubMed |

44  Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, et al. Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 2015; 6(8): 1445-1458.
| Crossref | Google Scholar | PubMed |

45  Longworth M, Connor M, Banister SD, Kassiou M. Synthesis and pharmacological profiling of the metabolites of synthetic cannabinoid drugs APICA, STS-135, ADB-PINACA, and 5F-ADB-PINACA. ACS Chem Neurosci 2017; 8(8): 1673-1680.
| Crossref | Google Scholar | PubMed |

46  Longworth M, Reekie TA, Blakey K, Boyd R, Connor M, Kassiou M. New-generation azaindole-adamantyl-derived synthetic cannabinoids. Forensic Toxicol 2019; 37(2): 350-365.
| Crossref | Google Scholar |

47  Moir M, Lane S, Lai F, Connor M, Hibbs DE, Kassiou M. Strategies to develop selective CB2 receptor agonists from indole carboxamide synthetic cannabinoids. Eur J Med Chem 2019; 180: 291-309.
| Crossref | Google Scholar | PubMed |

48  Shi Y, Duan YH, Ji YY, Wang ZL, Wu YR, Gunosewoyo H, et al. Amidoalkylindoles as potent and selective cannabinoid type 2 receptor agonists with in vivo efficacy in a mouse model of multiple sclerosis. J Med Chem 2017; 60(16): 7067-7083.
| Crossref | Google Scholar | PubMed |

49  Han S, Thatte J, Buzard DJ, Jones RM. Therapeutic utility of cannabinoid receptor type 2 (CB2) selective agonists. J Med Chem 2013; 56(21): 8224-8256.
| Crossref | Google Scholar | PubMed |

50  Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66(3): 638-675.
| Crossref | Google Scholar | PubMed |

51  Wilkinson SM, Gunosewoyo H, Barron ML, Boucher A, McDonnell M, Turner P, et al. The first CNS-active carborane: a novel P2X7 receptor antagonist with antidepressant activity. ACS Chem Neurosci 2014; 5(5): 335-339.
| Crossref | Google Scholar | PubMed |

52  Issa F, Kassiou M, Rendina LM. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem Rev 2011; 111(9): 5701-5722.
| Crossref | Google Scholar | PubMed |

53  Baxter A, Bent J, Bowers K, Braddock M, Brough S, Fagura M, et al. Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett 2003; 13(22): 4047-4050.
| Crossref | Google Scholar | PubMed |

54  Lesnikowski ZJ. Boron units as pharmacophores – new applications and opportunities of boron cluster chemistry. Collect Czech Chem Commun 2007; 72(12): 1646-1658.
| Crossref | Google Scholar |

55  O’Brien-Brown J, Jackson A, Reekie TA, Barron ML, Werry EL, Schiavini P, et al. Discovery and pharmacological evaluation of a novel series of adamantyl cyanoguanidines as P2X7 receptor antagonists. Eur J Med Chem 2017; 130: 433-439.
| Crossref | Google Scholar | PubMed |

56  Donnelly-Roberts DL, Namovic MT, Surber B, Vaidyanathan SX, Perez-Medrano A, Wang Y, et al. [3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacol 2009; 56(1): 223-229.
| Crossref | Google Scholar | PubMed |

57  Wong ECN, Reekie TA, Werry EL, O’Brien-Brown J, Bowyer SL, Kassiou M. Pharmacological evaluation of a novel series of urea, thiourea and guanidine derivatives as P2X7 receptor antagonists. Bioorg Med Chem Lett 2017; 27(11): 2439-2442.
| Crossref | Google Scholar | PubMed |

58  Garrett T, Gilchrist J, McKenzie A, Larik FA, Danon J, Werry E, et al. An investigation on linker modifications of cyanoguanidine-based P2X7 receptor antagonists. ChemMedChem 2024; e202400163.
| Crossref | Google Scholar | PubMed |

59  Wilkinson SM, Barron ML, O’Brien-Brown J, Janssen B, Stokes L, Werry EL, et al. Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 receptor antagonist. ACS Chem Neurosci 2017; 8(11): 2374-2380.
| Crossref | Google Scholar | PubMed |

60  Callis TB, Reekie TA, O’Brien-Brown J, Wong ECN, Werry EL, Elias N, et al. The role of polycyclic frameworks in modulating P2X7 receptor function. Tetrahedron 2018; 74(12): 1207-1219.
| Crossref | Google Scholar |

61  Michel AD, Chambers LJ, Walter DS. Negative and positive allosteric modulators of the P2X7 receptor. Br J Pharmacol 2008; 153(4): 737-750.
| Crossref | Google Scholar | PubMed |

62  Jackson A, Werry EL, O’Brien-Brown J, Schiavini P, Wilkinson S, Wong ECN, et al. Pharmacological characterization of a structural hybrid P2X7R antagonist using ATP and LL-37. Eur J Pharmacol 2022; 914: 174667.
| Crossref | Google Scholar | PubMed |