Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Magnetic properties and neutron spectroscopy of lanthanoid-{tetrabromocatecholate/18-crown-6} single-molecule magnets

Maja A. Dunstan A , Marina Cagnes B , Wasinee Phonsri C , Keith S. Murray C , Richard A. Mole B * and Colette Boskovic https://orcid.org/0000-0002-1882-2139 A *
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW 2232, Australia.

C School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

* Correspondence to: c.boskovic@unimelb.edu.au

Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 595-609 https://doi.org/10.1071/CH21306
Submitted: 28 November 2021  Accepted: 12 January 2022   Published: 14 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Lanthanoid single-molecule magnets (Ln-SMMs) exhibit slow magnetic relaxation at low temperatures. This arises from an energy barrier to magnetisation reversal associated with the crystal field (CF) splitting of the Ln(III) ion. The magnetic relaxation is impacted by the interaction of the molecule with the crystal lattice, so factors including particle size and crystal packing can play an important role. In this work, a family of compounds of general formula [Ln(18-c-6)(NO3)(Br4Cat)]·X (Ln = La, Tb, Dy; 18-c-6 = 18-crown-6; Br4Cat2− = tetrabromocatecholate) has been studied by inelastic neutron scattering (INS) and magnetometry to elucidate the effects of crystal packing on the slow magnetic relaxation of the Tb(III) and Dy(III) compounds. The deuterated analogues [Ln(18-c-6-d24)(NO3)(Br4Cat)]·CH3CN-d3 (1-LnD; Ln = La, Tb, Dy) have been synthesised, with 1-TbD and the diamagnetic analogue 1-LaD measured by INS. The dynamic magnetic properties of 1-TbD and 1-DyD have also been measured and compared for two samples with different particle sizes. To probe packing effects on the slow magnetic relaxation, two new solvatomorphs of the hydrogenous compounds [Ln(18-c-6)(NO3)(Br4Cat)]·X (2-Ln: X = CH2Cl2; 3-Ln: X = 0.5 toluene) have been obtained for Ln = Tb and Dy. The CF splitting between the ground and first excited CF pseudo-doublets has been experimentally determined for 1-TbD by INS, and strongly rare earth dependent and anharmonic lattice vibrational modes have also been observed in the INS spectra, with implications for slow magnetic relaxation. Dynamic magnetic measurements reveal significant particle-size dependence for the slow magnetic relaxation for 1-TbD, while a previously reported anomalous phonon bottleneck effect in the 1-DyD analogue does not change with particle size. Further dynamic magnetic measurements of 2-Ln and 3-Ln show that the slow magnetic relaxation in these Ln-SMMs is strongly dependent on lattice effects and crystal packing, which has implications for the future use of Ln-SMMs in devices.

Keywords: deuteration, inelastic neutron scattering, lanthanides, magnetic properties, phonon bottleneck, rare earths, single-molecule magnets, spectroscopy.


References

[1]  A Saywell, G Magnano, CJ Satterley, LMA Perdigão, AJ Britton, N Taleb, M del Carmen Giménez-López, NR Champness, JN O’Shea, PH Beton, Nat Commun 2010, 1, 75.
         | Crossref | GoogleScholarGoogle Scholar | 20865804PubMed |

[2]  M Mannini, F Bertani, C Tudisco, L Malavolti, L Poggini, K Misztal, D Menozzi, A Motta, E Otero, P Ohresser, P Sainctavit, GG Condorelli, E Dalcanale, R Sessoli, Nat Commun 2014, 5, 4582.
         | Crossref | GoogleScholarGoogle Scholar | 25109254PubMed |

[3]  S Marocchi, A Candini, D Klar, W Van den Heuvel, H Huang, F Troiani, V Corradini, R Biagi, V De Renzi, S Klyatskaya, K Kummer, NB Brookes, M Ruben, H Wende, U del Pennino, A Soncini, M Affronte, V Bellini, ACS Nano 2016, 10, 9353.
         | Crossref | GoogleScholarGoogle Scholar | 27726335PubMed |

[4]  G Serrano, L Poggini, M Briganti, AL Sorrentino, G Cucinotta, L Malavolti, B Cortigiani, E Otero, P Sainctavit, S Loth, F Parenti, A-L Barra, A Vindigni, A Cornia, F Totti, M Mannini, R Sessoli, Nat Mater 2020, 19, 546.
         | Crossref | GoogleScholarGoogle Scholar | 32066930PubMed |

[5]  M Atzori, S Benci, E Morra, L Tesi, M Chiesa, R Torre, L Sorace, R Sessoli, Inorg Chem 2018, 57, 731.
         | Crossref | GoogleScholarGoogle Scholar | 29280628PubMed |

[6]  M Shiddiq, D Komijani, Y Duan, A Gaita-Ariño, E Coronado, S Hill, Nature 2016, 531, 348.
         | Crossref | GoogleScholarGoogle Scholar | 26983539PubMed |

[7]  N Ishikawa, M Sugita, T Ishikawa, S-Y Koshihara, Y Kaizu, J Am Chem Soc 2003, 125, 8694.
         | Crossref | GoogleScholarGoogle Scholar | 12862442PubMed |

[8]  F Guo, BM Day, Y Chen, M-L Tong, A Mansikkamäki, RA Layfield, Science 2018, 362, 1400.
         | Crossref | GoogleScholarGoogle Scholar | 30337456PubMed |

[9]  P Zhang, L Zhang, J Tang, Dalton Trans 2015, 44, 3923.
         | Crossref | GoogleScholarGoogle Scholar | 25641200PubMed |

[10]  S-D Jiang, S-X Qin, Inorg Chem Front 2015, 2, 613.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  SK Langley, DP Wielechowski, V Vieru, NF Chilton, B Moubaraki, LF Chibotaru, KS Murray, Chem Sci 2014, 5, 3246.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  CA Gould, E Mu, V Vieru, LE Darago, K Chakarawet, MI Gonzalez, S Demir, JR Long, J Am Chem Soc 2020, 142, 21197.
         | Crossref | GoogleScholarGoogle Scholar | 33322909PubMed |

[13]  KR Meihaus, JD Rinehart, JR Long, Inorg Chem 2011, 50, 8484.
         | Crossref | GoogleScholarGoogle Scholar | 21834501PubMed |

[14]  F Habib, P Lin, J Long, I Korobkov, W Wernsdorfer, M Murugesu, J Am Chem Soc 2011, 133, 8830.
         | Crossref | GoogleScholarGoogle Scholar | 21563820PubMed |

[15]  J-L Liu, Y-C Chen, M-L Tong, Chem Soc Rev 2018, 47, 2431.
         | Crossref | GoogleScholarGoogle Scholar | 29492482PubMed |

[16]  MJ Giansiracusa, AK Kostopoulos, D Collison, REP Winpenny, NF Chilton, Chem Commun 2019, 55, 7025.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  JH Van, Vleck, Phys Rev 1941, 59, 724.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E Rousset, M Piccardo, M-E Boulon, RW Gable, A Soncini, L Sorace, C Boskovic, Chem Eur J 2018, 24, 14768.
         | Crossref | GoogleScholarGoogle Scholar | 29992641PubMed |

[19]  MA Dunstan, RA Mole, C Boskovic, Eur J Inorg Chem 2019, 8, 1090.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M Vonci, MJ Giansiracusa, W Van den Heuvel, RW Gable, B Moubaraki, KS Murray, D Yu, RA Mole, A Soncini, C Boskovic, Inorg Chem 2017, 56, 378.
         | Crossref | GoogleScholarGoogle Scholar | 27977150PubMed |

[21]  R Marx, F Moro, M Dörfel, L Ungur, M Waters, SD Jiang, M Orlita, J Taylor, W Frey, LF Chibotaru, J van Slageren, Chem Sci 2014, 5, 3287.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  DH Moseley, SE Stavretis, Z Zhu, M Guo, CM Brown, M Ozerov, Y Cheng, LL Daemen, R Richardson, G Knight, K Thirunavukkuarasu, AJ Ramirez-Cuesta, J Tang, Z-L Xue, Inorg Chem 2020, 59, 5218.
         | Crossref | GoogleScholarGoogle Scholar | 32196322PubMed |

[23]  BS Hudson, Vib Spectrosc 2006, 42, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  SE Stavretis, Y Cheng, LL Daemen, CM Brown, DH Moseley, E Bill, M Atanasov, AJ Ramirez-Cuesta, F Neese, Z-L Xue, Eur J Inorg Chem 2019, 8, 1119.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  E Rousset, RW Gable, A Starikova, C Boskovic, Cryst Growth Des 2020, 20, 3396.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  MA Dunstan, E Rousset, M-E Boulon, RW Gable, L Sorace, C Boskovic, Dalton Trans 2017, 46, 13756.
         | Crossref | GoogleScholarGoogle Scholar | 28956877PubMed |

[27]  WR Reed, MA Dunstan, RW Gable, W Phonsri, KS Murray, RA Mole, C Boskovic, Dalton Trans 2019, 48, 15635.
         | Crossref | GoogleScholarGoogle Scholar | 31465054PubMed |

[28]  MA Hay, C Boskovic, Chem Eur J 2021, 27, 3608.
         | Crossref | GoogleScholarGoogle Scholar | 32965741PubMed |

[29]  Llunell P, Casanova M, Cirera D, Bofill J, Alemany JM, Alvarez D, Pinsky S, Avnir M. SHAPE 2.1. Universitat de Barcelona and The Hebrew University of Jerusalem; 2003.

[30]  Lovesey SW. Theory of Neutron Scattering from Condensed Matter: Vol. 2. Oxford: Clarendon Press; 1984.

[31]  Anderson IS, Brown PJ, Carpenter JM, Lander G, Pynn R, Rowe JM, Schärpf O, Sears VF, Willis BTM. International Tables for Crystallography. International Union of Crystallography (IUCr); 2006. Vol. C, p. 430.

[32]  EJ Lisher, JB Forsyth, Acta Crystallogr A 1971, 27, 545.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  L Tesi, A Lunghi, M Atzori, E Lucaccini, L Sorace, F Totti, R Sessoli, Dalton Trans 2016, 45, 16635.
         | Crossref | GoogleScholarGoogle Scholar | 27484897PubMed |

[34]  AM Stoneham, Proc Phys Soc 1965, 86, 1163.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  MA Sørensen, UB Hansen, M Perfetti, KS Pedersen, E Bartolomé, GG Simeoni, H Mutka, S Rols, M Jeong, I Zivkovic, M Retuerto, A Arauzo, J Bartolomé, S Piligkos, H Weihe, LH Doerrer, J van Slageren, HM Rønnow, K Lefmann, J Bendix, Nat Commun 2018, 9, 1292.
         | Crossref | GoogleScholarGoogle Scholar | 29599433PubMed |

[36]  S Liu, J Lu, X-L Li, Z Zhu, J Tang, Dalton Trans 2020, 49, 12372.
         | Crossref | GoogleScholarGoogle Scholar | 32845258PubMed |

[37]  J Flores Gonzalez, V Montigaud, V Dorcet, K Bernot, B Le Guennic, F Pointillart, O Cador, Chem Eur J 2021, 27, 10160.
         | Crossref | GoogleScholarGoogle Scholar | 33998730PubMed |

[38]  KS Pedersen, L Ungur, M Sigrist, A Sundt, M Schau-Magnussen, V Vieru, H Mutka, S Rols, H Weihe, O Waldmann, LF Chibotaru, J Bendix, J Dreiser, Chem Sci 2014, 5, 1650.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  AL Blockmon, A Ullah, KD Hughey, Y Duan, KR O’Neal, M Ozerov, JJ Baldoví, J Aragó, A Gaita-Ariño, E Coronado, JL Musfeldt, Inorg Chem 2021, 60, 14096.
         | Crossref | GoogleScholarGoogle Scholar | 34415149PubMed |

[40]  A Lunghi, S Sanvito, Sci Adv 2019, 5, eaax7163.
         | Crossref | GoogleScholarGoogle Scholar | 31598553PubMed |

[41]  Agilent. CrysAlis PRO. Yarnton, Oxfordshire, England: Agilent Technologies Ltd; 2014.

[42]  GM Sheldrick, Acta Crystallogr A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  GM Sheldrick, Acta Crystallogr C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Crystallogr 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  D Kratzert, JJ Holstein, I Krossing, J Appl Crystallogr 2015, 48, 933.
         | Crossref | GoogleScholarGoogle Scholar | 26089767PubMed |

[46]  CF Macrae, I Sovago, SJ Cottrell, PTA Galek, P McCabe, E Pidcock, M Platings, GP Shields, JS Stevens, M Towler, PA Wood, J Appl Crystallogr 2020, 53, 226.
         | Crossref | GoogleScholarGoogle Scholar | 32047413PubMed |

[47]  D Yu, R Mole, T Noakes, S Kennedy, R Robinson, J Phys Soc Jpn 2013, 82, SA027.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  D Yu, RA Mole, GJ Kearley, EPJ Web Conf 2015, 83, 03019.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  D Richard, M Ferrand, GJ Kearley, J Neutron Res 1996, 4, 33.
         | Crossref | GoogleScholarGoogle Scholar |