Medicinal Cannabis – The Green Fairy Phenomenon
Onyekachi Raymond A , Mary Jane McCarthy A , Jess Baker A and Helen Poulsen A BA Forensic Specialised Analytical Services (F-SAS), Institute of Environmental Science and Research (ESR), PO Box 50348, Wellington 5240, New Zealand.
B Corresponding author. Email: Helen.Poulsen@esr.cri.nz
Australian Journal of Chemistry 74(6) 480-494 https://doi.org/10.1071/CH21001
Submitted: 1 January 2021 Accepted: 4 May 2021 Published: 26 May 2021
Abstract
Frustration at the restrictions to access prescribed cannabinoids in New Zealand has resulted in a black market of home-made cannabis-based products for medicinal use. These products are being made, and marketed illegally, by individuals calling themselves ‘Green Fairies’. The products take many forms and are being used to treat a range of illnesses and symptoms including pain, insomnia, anxiety, and seizures. Analytical extraction methods were developed to determine the cannabinoid content in a variety of matrices, principally those that are soluble in methanol and those that are soluble in hexane. An LC-MS/MS method was developed that detected THC, THCA, CBD, CBDA, CBG, CBGA, CBN, THCV, and CBC with lower detection limits around 0.001 mg of cannabinoid per gram (mg g−1) of product. One hundred ‘Green Fairy’ samples have been analysed to determine the cannabinoid content, including 12 fully extracted cannabis oil (FECO) samples, 12 ethanolic tinctures, 6 vape juices, 39 oily liquids with olive oil, hemp seed oil, or medium chain triglycerides (MCT) as a base, and 31 waxy solids made using coconut oil. Nine named cannabis plant cultivars purported to be used to make these products have also been analysed. The results of the analyses show that these Green Fairy products contain a wide range of cannabinoid concentrations and the claim that a product was high in CBD was often not correct. The proposed dose size was not specified for these products, but few would provide what is considered an effective dose when compared with the administration of commercially purified cannabinoid products available by prescription. For many products the manufacturer had specified which cannabis cultivar had been used but a comparison of cannabinoid ratios showed a lack of consistency within products said to be made from the same strain. Analysis of named cannabis cultivars available showed little variation in the relative amounts of THC and CBD.
Keywords: Green Fairies, cannabinoids, New Zealand, medicinal cannabis, THC, CBD.
References
[1] (a) https://www.health.govt.nz/our-work/regulation-health-and-disability-system/medicinal-cannabis-agency/medicinal-cannabis-agency-background-information (accessed 10 August 2020).(b) https://www.health.govt.nz/our-work/regulation-health-and-disability-system/medicinal-cannabis-agency (accessed April 2021).
[2] M. A. Huestis, Chem. Biodivers. 2007, 4, 1770.
| Crossref | GoogleScholarGoogle Scholar | 17712819PubMed |
[3] T. Moreno, P. Dyer, S. Tallon, Ind. Eng. Chem. Res. 2020, 59, 20307.
| Crossref | GoogleScholarGoogle Scholar |
[4] N. Raikos, H. Schmid, S. Nussbaumer, L. Ambach, S. Lanz, A. Längin, S. König, N. Roth, V. Auwärter, W. Weinmann, Forensic Sci. Int. 2014, 243, 130.
| Crossref | GoogleScholarGoogle Scholar | 25173986PubMed |
[5] U. Meier, F. Dussy, E. Scheurer, K. Mercer-Chalmers-Bender, S. Hangartner, Forensic Sci. Int. 2018, 291, 62.
| Crossref | GoogleScholarGoogle Scholar | 30149280PubMed |
[6] M. Perez-Reyes, M. Lipton, M. Timmons, M. Wall, D. Brine, K. Davis, Clin. Pharmacol. Ther. 1973, 14, 48.
| Crossref | GoogleScholarGoogle Scholar | 4683071PubMed |
[7] A. Ohlsson, J. E. Lindgren, A. Wahlen, S. Agurell, L. Hollister, H. Gillespie, Clin. Pharmacol. Ther. 1980, 28, 409.
| Crossref | GoogleScholarGoogle Scholar | 6250760PubMed |
[8] M. N. Newmeyer, M. J. Swortwood, M. Andersson, O. A. Abulseoud, K. B. Scheidweiler, M. A. Huestis, Clin. Chem. 2017, 63, 647.
| Crossref | GoogleScholarGoogle Scholar | 28188235PubMed |
[9] T. R. Spindle, E. J. Cone, N. J. Schlienz, J. M. Mitchell, G. E. Bigelow, R. Flegel, E. Hayes, R. Vandrey, J. Anal. Toxicol. 2019, 43, 233.
| Crossref | GoogleScholarGoogle Scholar | 30615181PubMed |
[10] P. Meyer, M. Langos, R. Brenneisen, Med. Cannabis Cannabinoids 2018, 1, 36.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. L. Karschner, W. D. Darwin, R. S. Goodwin, S. Wright, M. A. Huestis, Clin. Chem. 2011, 57, 66.
| Crossref | GoogleScholarGoogle Scholar | 21078841PubMed |
[12] S. A. Millar, N. L. Stone, A. S. Yates, S. E. O’Sullivan, Front. Pharmacol. 2018, 9, 1365.
| Crossref | GoogleScholarGoogle Scholar | 30534073PubMed |
[13] M. Eichler, L. Spinedi, S. Unfer-Grauwiler, M. Bodmer, C. Surber, M. Luedi, J. Drewe, Planta Med. 2012, 78, 686.
| Crossref | GoogleScholarGoogle Scholar | 22411724PubMed |
[14] P. F. Whiting, R. F. Wolff, S. Deshpande, M. Di Nisio, S. Duffy, A. V. Hernandez, J. C. Keurentjes, S. Lang, K. Misso, S. Ryder, S. Schmidlkofer, M. Westwood, J. Kleijnen, JAMA 2015, 313, 2456.
| Crossref | GoogleScholarGoogle Scholar | 26103030PubMed |
[15] L. L. Romano, A. Hazekamp, Cannabinoids. 2013, 1, 1.
[16] A. Suraev, N. Lintzeris, J. Stuart, R. Kevin, R. Blackburn, E. Richards, J. C. Arnold, C. Ireland, L. Todd, D. J. Allsop, I. S. McGregor, Sci. Rep. 2018, 8, 1.
[17] W. Hall, Addiction 2015, 110, 19.
| Crossref | GoogleScholarGoogle Scholar | 25287883PubMed |
[18] (a) L. Bachs, H. Mørland, Forensic Sci. Int. 2001, 124, 200.
| Crossref | GoogleScholarGoogle Scholar | 11792512PubMed |
(b) O. H. Drummer, D. Gerostamoulos, N. W. Woodford, Forensic Sci. Int. 2019, 298, 298.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. S. Ong, D. C. Kappatos, S. G. G. Russell, H. A. Poulsen, S. D. Banister, R. R. Gerona, M. Glass, C. S. Johnson, M. J. McCarthy, Drug Test. Anal. 2020, 12, 195.
| Crossref | GoogleScholarGoogle Scholar | 31595682PubMed |
[20] L. Nahar, A. Onder, S. D. Sarker, Phytochem. Anal. 2020, 4, 31.
[21] L. Vaclavik, F. Benes, M. Fenclova, J. Hricko, A. Krmela, V. Svobodova, J. Hajslova, K. Mastovska, J. AOAC Int. 2019, 6, 102.
[22] A. Kassambara, Practical Guide to Principal Component Methods in R 2017 (STHDA).
[23] I. Braithwaite, G. Newton-Howes, K. Oldfield, A. Semprini, N. Z. Med. J. 2019, 132, 1500.
[24] (a) P. Alves, C. Amaral, N. Teixeira, G. Correia-da-Silva, Pharmacol. Res. 2020, 157, 104822.
| Crossref | GoogleScholarGoogle Scholar | 32335286PubMed |
(b) M. A. Huestis, R. Solimini, S. Pichini, R. Pacifici, J. Carlier, F. P. Busardò, Curr. Neuropharmacol. 2019, 17, 974.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Yamaori, Y. Okamoto, I. Yamamoto, K. Watanabe, Drug Metab. Dispos. 2011, 39, 2049.
| Crossref | GoogleScholarGoogle Scholar |