Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N-Heterocyclic Carbenes–CuI Complexes as Catalysts: A Theoretical Insight

Nosheen Beig A , Varsha Goyal A , Raakhi Gupta A and Raj K. Bansal https://orcid.org/0000-0002-8154-9817 A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The IIS (deemed to be University), Jaipur-302020, India.

B Corresponding author. Email: bansal56@gmail.com

Australian Journal of Chemistry 74(7) 503-513 https://doi.org/10.1071/CH20332
Submitted: 11 November 2020  Accepted: 11 January 2021   Published: 4 February 2021

Abstract

The electronic structures of N-heterocyclic carbenes (NHC) imidazolinylidene, thiazolinylidene, imidazolylidene, thiazolylidene, and 1,2,4-triazolylidene and their complexes with cuprous halides (CuX, X = Cl, Br, I) were investigated theoretically at the B3LYP/def2-SVP level. In contrast to other NHCs, imidazolylidene and 1,2,4-triazolylidene do not dimerize owing to the negligible coefficient of the vacant p-orbital at the carbene centre in their respective LUMOs. This is further supported by their greater thermodynamic and kinetic stabilities revealed by greater activation free energies and smaller standard free energies for their dimerization. Second-order perturbation interactions in the natural bond orbital (NBO) analysis of the NHCs indicate that six π electrons are delocalized in imidazolylidene, thiazolylidene, and 1,2,4-triazolylidene, conferring aromatic character and thereby enhancing their thermodynamic stability. NBO analysis reveals the existence of effective back bonding from a d orbital of Cu to the NHC, increasing the Wiberg bond index of the C–Cu bond to ~1.5. Owing to the large electronic chemical potential (μ) and high nucleophilicity indices, NHCs are able to transfer their electron density effectively to the cuprous halides having low μ values and high electrophilicity indices to yield stable NHC–CuI complexes. Large values of the Fukui function f(r) at the carbene centre of the NHCs and Cu atom of the NHC–CuI complexes indicate their softness. Imidazolylidene was found to be the softest, rationalizing wide use of this class of NHCs as ligands. The coordination of the NHCs to cuprous halides is either barrierless or has a very low activation free energy barrier. In the A3 reaction wherein NHC–Cu(I) complexes are used as catalyst, the reaction of NHC–CuI with phenylacetylene changes the latter into acetylide accompanied by raising the energy level of its HOMO considerably compared with the level of the uncomplexed alkyne, making its reaction with benzaldehyde barrierless.


References

[1]  A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39.
         | Crossref | GoogleScholarGoogle Scholar | 11749234PubMed |
         (b) M. C. Janhnke, F. E. Hahn, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, 2nd edn (Ed. S. Diez-González) 2017, pp. 1–45 (Royal Society of Chemistry: Cambridge).

[3]  (a) H. W. Wanzlick, E. Schikora, Angew. Chem. 1960, 72, 494.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. J. Arduengo, J. R. Goerlich, W. J. Marshall, J. Am. Chem. Soc. 1995, 117, 11027.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F. E. Hahn, M. C. Janhnke, Angew. Chem. Int. Ed. 2008, 47, 3122.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. J. Arduengo, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc. 1997, 119, 12742.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P. Melder, K. Ebel, S. Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49, 4759.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Organometallics 2011, 30, 6017.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. Mathew, A. Neels, M. Albrecht, J. Am. Chem. Soc. 2008, 130, 13534.
         | Crossref | GoogleScholarGoogle Scholar | 18785741PubMed |

[7]  A. J. Arduengo, J. R. Goerlich, W. J. Marshall, Liebigs Ann. 1997, 1997, 365.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) F. E. Hahn, L. Wittenbecher, R. Boese, D. Blaser, Chem. – Eur. J. 1999, 5, 1931.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. E. Hahn, L. Wittenbecher, D. Le Van, R. Frohlich, Angew. Chem. Int. Ed. 2000, 39, 541.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. W. Alder, M. E. Blake, C. Bortolotti, S. Bufali, C. P. Butts, E. Linehan, J. M. Oliva, A. G. Orpen, M. J. Quayle, Chem. Commun. 1999, 241.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi, I. A. Fallis, Organometallics 2008, 27, 3279.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. L. Kolychev, I. A. Portnyagin, U. V. Shuntikov, V. N. Khrustalev, M. S. Nechaev, J. Organomet. Chem. 2009, 694, 2454.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
         | Crossref | GoogleScholarGoogle Scholar | 17956132PubMed |
      (b) N. Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Ojha, R. K. Bansal, Curr. Organocatal. 2020, 7, 108.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Ojha, R. K. Bansal, Curr. Catal. 2021,
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) F. Glorius, Top. Organomet. Chem. 2006, 21, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. C. Jahnke, F. F. Hahn, Top. Organomet. Chem. 2010, 30, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) W. A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J. Artus, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C. Li, C. M. Crudden, Chem. Rev. 2019, 119, 4986.
         | Crossref | GoogleScholarGoogle Scholar |

[12]     (a) D. J. Nelson, J. M. Praetorius, C. Crudden, in Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, 2nd edn (Ed. S. Díez-González) 2017, pp. 46–98 (Royal Society of Chemistry: Cambridge). 10.1039/9781849732161-00001
      (b) E. Despagnet-Ayoub, T. Ritter, Top. Organomet. Chem. 2007, 21, 193.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) W. A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J. Artus, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. A. Herrmann, C. Kocher, Angew. Chem. Int. Ed. 1997, 36, 2162.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543.
         | Crossref | GoogleScholarGoogle Scholar | 11439041PubMed |
      (b) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhelm, M. Scholl, T. L. Choi, S. Ding, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 2546.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) A. Furstner, G. Seidel, D. Kremzow, C. W. Lehman, Organometallics 2003, 22, 907.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Chamizo, J. Morgado, M. Castro, S. Bernis, Organometallics 2002, 21, 5428.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Kremzow, G. Seidel, C. W. Lehman, A. Furstner, Chem. – Eur. J. 2005, 11, 1833.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Steinke, B. K. Shaw, H. Jong, B. O. Patrick, M. D. Fryzuk, Organometallics 2009, 28, 2830.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  I. Özdemir, A. Denizci, H. T. Öztiirk, B. Centinkaya, Appl. Organomet. Chem. 2004, 18, 318.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) H. D. Velazquez, F. Verpoort, Chem. Soc. Rev. 2012, 41, 7032.
         | Crossref | GoogleScholarGoogle Scholar | 22842861PubMed |
      (b) F. Wang, L. Liu, W. Wang, S. Li, M. Shi, Coord. Chem. Rev. 2012, 256, 804.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Peris, Chem. Rev. 2018, 118, 9988.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) M. Trose, F. Nahra, C. S. J. Cazin, Coord. Chem. Rev. 2018, 355, 380.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. Lazreg, F. Nahra, C. S. J. Cazin, Coord. Chem. Rev. 2015, 293–294, 48.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. D. Egbert, C. S. J. Cazin, S. P. Nolan, Catal. Sci. Technol. 2013, 3, 912.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Wang, X. Sun, C. Xu, B. Ji, Front Chem. 2019, 7, 422.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  F. Nahra, A. Gómez-Herrera, C. S. J. Cazin, Dalton Trans. 2017, 628.
         | Crossref | GoogleScholarGoogle Scholar | 27882367PubMed |

[20]  M. Wang, P. Li, L. Wang, Eur. J. Org. Chem. 2008, 2255.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. Cavallo, A. Correa, C. Costabile, H. Jacobsen, J. Organomet. Chem. 2005, 690, 5407.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) X. Hu, Y. Tang, P. Ganzel, K. Meyer, Organometallics 2003, 22, 612.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) X. Hu, I. Castro-Rodriguez, K. Olsen, K. Meyer, Organometallics 2004, 23, 755.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo, S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 3516.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  D. Nemcsok, K. Witchmann, G. Frenking, Organometallics 2004, 23, 3640.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  L. Kong, J. Morvan, D. Pichon, M. Jean, M. Albalat, T. Vives, S. Colombel-Rouen, M. Giorgi, V. Dorcet, T. Roisnel, C. Crěvisky, D. Nuel, P. Nava, S. Humbel, N. Vanthuyne, M. Mauduit, H. Clavier, J. Am. Chem. Soc. 2020, 142, 93.
         | Crossref | GoogleScholarGoogle Scholar | 31846302PubMed |

[25]  S. Liu, S. Xu, J. Wang, F. Zhao, H. Xia, Y. Wang, J. Coord. Chem. 2017, 70, 584.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. Dinda, G. Roymahapatra, D. Sarkar, T. K. Mondal, C. Sinha, W. Hwang, S. S. Al-Deyab, J. Mol. Struct. 2017, 1127, 449.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  P. I. Jolly, S. Zhou, D. W. Thomson, J. Garnier, J. A. Parkinson, T. Tuttle, J. A. Murphy, Chem. Sci. 2012, 3, 1675.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  I. Fleming, Frontier Orbitals and Organic Chemical Reactions 1976 (Wiley: London).

[29]  https://people.chem.ucsb.edu/kahn/kalju/chem162/public/smallmol_visual_elpot.html

[30]  P. Politzer, K. C. Daiker, in Models for Chemical Reactivity in the Force Concept in Chemistry (Ed. R. C. Deb) 1981, pp. 294–387 (Van Nostrand Reinhold Co.: New York, NY). 10.1103/REVMODPHYS.45.22

[31]  G. Tasi, I. Pálinkó, L. Nyerges, P. Fejes, H. Förster, J. Chem. Inf. Comput. Sci. 1993, 33, 296.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. Chen, B. Landers, O. Navarro, Org. Biomol. Chem. 2012, 10, 2206.
         | Crossref | GoogleScholarGoogle Scholar | 22246238PubMed |

[33]  Y. Li, X. Chen, Y. Song, L. Fang, G. Zou, Dalton Trans. 2011, 2046.
         | Crossref | GoogleScholarGoogle Scholar | 21264392PubMed |

[34]  M. Chen, O. Navarro, Synlett 2013, 1190.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  R. G. Parr, W. Yang, Annu. Rev. Phys. Chem. 1995, 46, 701.
         | Crossref | GoogleScholarGoogle Scholar | 24341393PubMed |

[36]  P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.
         | Crossref | GoogleScholarGoogle Scholar | 12744694PubMed |

[37]  L. R. Domingo, M. Rios-Gutiérrez, P. Pérez, Molecules 2016, 21, 748.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. G. Pearson, J. Songstad, J. Am. Chem. Soc. 1967, 89, 1827.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  G. Job, F. Hermann, Eur. J. Phys. 2006, 27, 353.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  P. Pérez, L. R. Domingo, A. Aizman, R. Contreras, in The Electrophilicity Index in Organic Chemistry in Theoretical Aspects of Chemical Reactivity (Ed. A. Toro-Labbe) 2007, Vol. 19, pp. 139–201 (Elsevier: New York, NY). 10.1016/S1380-7323(07)80010-0

[41]  (a) L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 2008, 73, 4615.
         | Crossref | GoogleScholarGoogle Scholar | 18484771PubMed |
      (b) L. R. Domingo, P. Pérez, Org. Biomol. Chem. 2011, 9, 7168.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  F. Mendez, J. L. Gázquez, J. Am. Chem. Soc. 1994, 116, 9298.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  W. Yang, W. J. Mortier, J. Am. Chem. Soc. 1986, 108, 5708.
         | Crossref | GoogleScholarGoogle Scholar | 22175316PubMed |

[44]  R. K. Roy, K. Hirao, S. Pal, J. Chem. Phys. 2000, 113, 1372.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  P. Fuentealba, P. Pérez, R. R. Contreras, J. Chem. Phys. 2000, 113, 2544.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  P. Bultinck, R. Carbó-Dorca, W. Langenaeker, J. Chem. Phys. 2003, 118, 4349.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 2016 (Gaussian, Inc.: Wallingford, CT).

[48]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  C. Gonzalez, F. Weinhold, J. Chem. Phys. 1990, 94, 5523.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736.
         | Crossref | GoogleScholarGoogle Scholar |