Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Synthesis of 2-Arylbenzimidazole and 2-Arylbenzothiazole Derivatives by MnO2/MOF-199

Elham Amouhadi A , Razieh Fazaeli https://orcid.org/0000-0003-3452-0066 A B and Hamid Aliyan A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311, Iran.

B Corresponding author. Email: fazaeli@iaush.ac.ir

Australian Journal of Chemistry 74(7) 495-502 https://doi.org/10.1071/CH20264
Submitted: 31 August 2020  Accepted: 27 December 2020   Published: 2 February 2021

Abstract

The main objective of this research is to develop efficient and environmentally benign heterogeneous catalysts for synthesis of 2-arylbenzimidazole and 2-arylbenzothiazoles derivatives by MnO2/MOF-199. For this purpose, a heterogeneous MnO2/MOF-199 catalyst was prepared by the solvothermal method, and the prepared catalyst was characterised by various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET, IR, thermogravimetric–differential thermogravimetric (TG-DTG), and temperature-programmed desorption with ammonia (NH3-TPD) analysis. The solid catalyst, with a MnO2/MOF-199 loading of 9 %, demonstrated a high catalytic activity in the synthesis of 1,2-arylbenzimidazole and 1,2-arylbenzothiazole derivatives and the catalyst could be reused for at least 5 cycles under mild conditions.


References

[1]  G. Yadav, S. Ganguly, Eur. J. Med. Chem. 2015, 97, 419.
         | Crossref | GoogleScholarGoogle Scholar | 25479684PubMed |

[2]  C. S. Chang, J. F. Liu, H. J. Lin, C. D. Lin, C. H. Tang, D. Y. Lu, Y. T. Sing, L. Y. Chen, M. C. Kao, S. C. Kuo, C. H. Lai, Eur. J. Med. Chem. 2012, 48, 244.
         | Crossref | GoogleScholarGoogle Scholar | 22217866PubMed |

[3]  M. A. Omar, Y. M. Shaker, S. A. Galal, M. M. Ali, m. Kerwin, J. Li, H. Tokuda, R. A. Ramadan, H. I. E. Diwani, Bioorg. Med. Chem. 2012, 20, 6989.
         | Crossref | GoogleScholarGoogle Scholar | 23123017PubMed |

[4]  M. L. Morninstar, T. Roth, D. W. Farnsworth, M. K. Smith, K. Watson, R. W. Buckheit, K. Das, W. Zhang, E. Arnold, J. G. Julias, S. H. Hughes, C. J. Michejda, J. Med. Chem. 2007, 50, 4003.

[5]  T. Fonseca, B. Gigante, M. M. Marques, T. L. Gilchrist, E. De Clercq, Bioorg. Med. Chem. 2004, 12, 103.
         | Crossref | GoogleScholarGoogle Scholar | 14697775PubMed |

[6]  S. Dettmann, K. Szymanowitz, A. Wellner, A. Schiedel, C. E. Muller, R. Gust, Bioorg. Med. Chem. 2010, 18, 4905.
         | Crossref | GoogleScholarGoogle Scholar | 20598555PubMed |

[7]  A. Kamal, M. K. Reddy, T. B. Shaik, Rajender, Y. V. V. Srikanth, V. S. Reddy, G. B. Kumar, S. V. Kalivendi, Eur. J. Med. Chem. 2012, 50, 9.
         | Crossref | GoogleScholarGoogle Scholar | 22361684PubMed |

[8]  J. S. Kim, B. Gatto, C. Yu, A. Liu, L. F. Liu, E. J. LaVoie, J. Med. Chem. 1996, 39, 992.
         | Crossref | GoogleScholarGoogle Scholar | 8632422PubMed |

[9]  Y. Bai, J. Lu, Z. Shi, B. Yang, Synlett 2001, 0544.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. N. Nadaf, S. A. Siddiqui, T. Daniel, R. J. Lahoti, K. V. Srinivasan, J. Mol. Catal. Chem. 2004, 214, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  P. N. Preston, in The Chemistry of Heterocyclic Compounds (Eds A. Weissberger, E. C. Taylor) 1981, Part 1, Vol. 40, pp. 6–60 (Wiley: New York, NY).

[12]  M. R. Grimmett, in Comprehensive Heterocyclic Chemistry (Eds A. R. Katritzky, C. W. Rees) 1984, Vol. 5, pp. 457–487 (Pergamon: Oxford).

[13]  R. Fazaeli, H. Aliyan, Appl. Catal. A Gen. 2009, 353, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Aliyan, R. Fazaeli, N. Fazaeli, A. R. Massah, H. Javaherian Naghash, M. Alizadeh, G. Emami, Heteroatom Chem. 2009, 20, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. J. Kepert, M. J. Rosseinsky, Chem. Commun. 1998, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. Aliyan, R. Fazaeli, Can. J. Chem. 2020, 98, 445.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
         | Crossref | GoogleScholarGoogle Scholar | 22280456PubMed |

[18]  M. Sanaei, R. Fazaeli, H. Aliyan, J. Chin. Chem. Soc. 2019, 66, 1290.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  E. Amouhadi, R. Fazaeli, H. Aliyan, J. Chin. Chem. Soc. 2019, 66, 608.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Saeedi, R. Fazaeli, H. Aliyan, J. Sol-Gel Sci. Technol. 2016, 77, 404.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Ebrahimi, R. Fazaeli, H. Aliyan, Z. Naturforsch. B: J. Che, Sci. 2016, 71, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T. D. Hu, Y. Jiang, Y. H. Ding, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 14825.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  W. Xu, G. Li, W. Lia, H. Zhang, RSC Adv. 2016, 6, 37530.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Guo, C. Froese, Q. Fu, Y.-T. Chen, B. Peng, W. Kleist, R. A. Fischer, M. Muhler, Y. Wang, J. Phys. Chem. C 2018, 122, 21433.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. S. Lin, A. K. Adhikari, C. N. Ku, C. L. Chiang, H. Kuo, Int. J. Hydrogen Energy 2012, 37, 13865.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. A. Saleh, S. Agarwal, V. K. Gupta, Appl. Catal. B 2011, 106, 46.

[28]  L. T. L. Nguyen, T. T. Nguyen, K. D. Nguyen, N. T. S. Phan, Appl. Catal. A Gen. 2012, 425–426, 44.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Yang, Q. Gong, L. Zhao, H. Sun, N. Ren, J. Qin, J. Xu, H. Yang, Desalination 2011, 278, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. K. Papageorgiou, E. P. Kouvelos, E. P. Favvas, A. A. Sapalidis, G. E. Romanos, F. K. Katsaros, Carbohydr. Res. 2010, 345, 469.
         | Crossref | GoogleScholarGoogle Scholar | 20044077PubMed |

[31]  A. Arnanz, M. Pintado-Sierra, A. Corma, M. Iglesias, F. Sanchez, Adv. Synth. Catal. 2012, 354, 1347.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  N. Omrani, A. R. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. Chem. 2020, 389, 112223.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Q. Liu, Z.-X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 11563.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Jia, P. Zhang, L. Chen, Catal. Sci. Technol. 2016, 6, 5841.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  T. V. Nguyen Thi, C. L. Luu, T. C. Hoang, T. Nguyen, T. H. Bui, P. H. D. Nguyen, T. P. P. Thi, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4, 035016.

[36]  R. N. Reddy, R. G. Reddy, J. Power Sources 2004, 132, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Y. Sun, N. Huang, X. Sun, D. Wang, J. Zhang, S. Qiao, Z. Gao, Int. J. Hydrogen Energy 2017, 42, 20016.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  W. P. Mounfield, M. T. Claure, P. P. K. Agrawal, C. W. Jones, K. S. Walton, Ind. Eng. Chem. Res. 2016, 55, 6492.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  J. Zhou, M. Wu, Y. Zhang, C. Zhu, Y. Fang, Y. Li, L. Yu, Appl. Surf. Sci. 2018, 447, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  R. Yepez, S. Garcia, P. Schachat, M. Sanchez-Sanchez, J. H. Gonzalez-Estefan, E. Gonzalez-Zamora, I. A. Ibarra, J. Aguilar-Pliego, New J. Chem. 2013, 37, 1.
         | Crossref | GoogleScholarGoogle Scholar |