Gold Catalysed 1,4-Enyne Acetate Strategy for the Synthesis of 1H-Indenes and Partially Hydrogenated Methanonaphtho[1,2-c]furan-1,3(4H)-diones*
Xiaoyu Chen A C , Andrew Thomas Holm A C and Philip Wai Hong Chan A B DA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
C These authors contributed equally to this work.
D Corresponding author. Email: phil.chan@monash.edu
Australian Journal of Chemistry 73(12) 1165-1175 https://doi.org/10.1071/CH20175
Submitted: 31 May 2020 Accepted: 6 July 2020 Published: 13 August 2020
Abstract
A synthetic method to prepare 1H-indenes and partially hydrogenated methanonaphtho[1,2-c]furan-1,3(4H)-diones from gold(i)-catalysed 1,4-enyne acetate cycloisomerisation and oxidation or Diels–Alder reaction with maleic anhydride is described. The proposed mechanism involves Rautenstrauch rearrangement of the 1,4-enyne motif to give an in situ formed 1,3-cyclopentadiene intermediate. This is followed by 6-endo-dig cyclisation of the cyclic adduct and oxidation to give the aromatic carbocycle or Diels–Alder reaction with maleic anhydride to afford the bridged furan product.
References
[1] Selected reviews on gold catalysis, see refs [2–11].[2] F. Gagosz, Synthesis 2019, 1087.
[3] K. Holzschneider, S. F. Kirsch, Isr. J. Chem. 2018, 58, 596.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Wei, M. Shi, ACS Catal. 2016, 6, 2515.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331.
| Crossref | GoogleScholarGoogle Scholar | 26673389PubMed |
[6] R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
| Crossref | GoogleScholarGoogle Scholar | 25844920PubMed |
[7] Gold Catalysis: A Homogeneous Approach (Eds F. D. Toste, V. Michelet) 2014 (Imperial College Press: London).
[8] A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864.
| Crossref | GoogleScholarGoogle Scholar |
[9] Modern Gold Catalyzed Synthesis (Eds A. S. K. Hashmi, F. D. Toste) 2012 (Wiley-VCH: Weinheim).
[10] F. Miege, C. Meyer, J. Cossy, Beilstein J. Org. Chem. 2011, 7, 717.
| Crossref | GoogleScholarGoogle Scholar | 21804867PubMed |
[11] A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208.
| Crossref | GoogleScholarGoogle Scholar | 19847352PubMed |
[12] Selected reviews on gold-catalysed cyclisation of propargyl esters, see refs [13–19].
[13] J. W. Boyle, Y. Zhao, P. W. H. Chan, Synthesis 2018, 1402.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471.
| Crossref | GoogleScholarGoogle Scholar | 27385433PubMed |
[15] D. P. Day, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1368.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953.
| Crossref | GoogleScholarGoogle Scholar | 24564512PubMed |
[17] B. J. Ayers, P. W. H. Chan, Synlett 2015, 1305.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232.
| Crossref | GoogleScholarGoogle Scholar |
[19] E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.
| Crossref | GoogleScholarGoogle Scholar | 18636778PubMed |
[20] X. Chen, C. A. Baratay, M. E. Mark, X. Xu, P. W. H. Chan, Org. Lett. 2020, 22, 2849.
| Crossref | GoogleScholarGoogle Scholar | 32212711PubMed |
[21] M. Mathiew, J. K. Tan, P. W. H. Chan, Angew. Chem. Int. Ed. 2018, 57, 14235.
| Crossref | GoogleScholarGoogle Scholar |
[22] X. Chen, D. P. Day, W. T. Teo, P. W. H. Chan, Org. Lett. 2016, 18, 5936.
| Crossref | GoogleScholarGoogle Scholar | 27791382PubMed |
[23] C. Bürki, A. Whyte, S. Arndt, A. S. K. Hashmi, M. Lautens, Org. Lett. 2016, 18, 5058.
| Crossref | GoogleScholarGoogle Scholar | 27661092PubMed |
[24] D. Susanti, L. J. Liu, W. Rao, S. Lin, D.-L. Ma, C.-H. Leung, P. W. H. Chan, Chem. – Eur. J. 2015, 21, 9111.
| Crossref | GoogleScholarGoogle Scholar | 25982956PubMed |
[25] X. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802.
| Crossref | GoogleScholarGoogle Scholar | 15839674PubMed |
[26] O. N. Faza, C. S. Loṕez, R. Álvarez, A. R. de Lera, J. Am. Chem. Soc. 2006, 128, 2434.
| Crossref | GoogleScholarGoogle Scholar | 16478199PubMed |
[27] Selected recent examples of gold-catalysed carbocyclic synthesis, see refs [21–23], [25] and [28–39].
[28] P. T. Bohan, F. D. Toste, J. Am. Chem. Soc. 2017, 139, 11016.
| Crossref | GoogleScholarGoogle Scholar | 28771334PubMed |
[29] S. K. Thummanapelli, S. Hosseyni, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun. 2016, 52, 7687.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Rao, J. W. Boyle, P. W. H. Chan, Chem. – Eur. J. 2016, 22, 6532.
| Crossref | GoogleScholarGoogle Scholar | 26945940PubMed |
[31] E. Rettenmeier, M. M. Hansmann, A. Ahrens, K. Rubenacker, T. Saboo, J. Massholder, C. Meier, M. Rudolph, F. Rominger, A. S. Hashmi, Chem. – Eur. J. 2015, 21, 14401.
| Crossref | GoogleScholarGoogle Scholar | 26291466PubMed |
[32] W. Rao, D. Susanti, B. J. Ayers, P. W. H. Chan, J. Am. Chem. Soc. 2015, 137, 6350.
| Crossref | GoogleScholarGoogle Scholar | 25905645PubMed |
[33] J. Yan, G. L. Tay, C. Neo, B. R. Lee, P. W. H. Chan, Org. Lett. 2015, 17, 4176.
| Crossref | GoogleScholarGoogle Scholar | 26291118PubMed |
[34] W. Zi, H. Wu, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3225.
| Crossref | GoogleScholarGoogle Scholar | 25710515PubMed |
[35] D. Li, W. Rao, G. L. Tay, B. J. Ayers, P. W. H. Chan, J. Org. Chem. 2014, 79, 11301.
| Crossref | GoogleScholarGoogle Scholar | 25263810PubMed |
[36] W. Rao, M. J. Koh, D. Li, H. Hirao, P. W. H. Chan, J. Am. Chem. Soc. 2013, 135, 7926.
| Crossref | GoogleScholarGoogle Scholar | 23627597PubMed |
[37] W. Rao, Sally, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183.
| Crossref | GoogleScholarGoogle Scholar | 23458312PubMed |
[38] T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481.
| Crossref | GoogleScholarGoogle Scholar |
[39] D. Lebœuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868.
| Crossref | GoogleScholarGoogle Scholar |
[40] Selected examples of gold-catalysed heterocyclic synthesis, see refs [20], [24], [29], [33] and [41–60].
[41] X. Cheng, Z. Wang, C. D. Quintanilla, L. Zhang, J. Am. Chem. Soc. 2019, 141, 3787.
| Crossref | GoogleScholarGoogle Scholar | 30789268PubMed |
[42] M. Bao, X. Wang, L. Qiu, W. Hu, P. W. H. Chan, X. Xu, Org. Lett. 2019, 21, 1813.
| Crossref | GoogleScholarGoogle Scholar | 30840467PubMed |
[43] Y. Zhao, J. Jin, P. W. H. Chan, Adv. Synth. Catal. 2019, 361, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[44] D. Allegue, J. González, S. Fernández, J. Santamaría, A. Ballesteros, Adv. Synth. Catal. 2019, 361, 758.
| Crossref | GoogleScholarGoogle Scholar |
[45] M. E. Muratore, A. I. Konovalov, H. Armengol-Relats, A. M. Echavarren, Chem. – Eur. J. 2018, 24, 15613.
| Crossref | GoogleScholarGoogle Scholar | 30066978PubMed |
[46] J. Zhao, W. Xu, X. Xie, N. Sun, X. Li, Y. Liu, Org. Lett. 2018, 20, 5461.
| Crossref | GoogleScholarGoogle Scholar | 30102048PubMed |
[47] J. Jin, Y. Zhao, E. M. L. Sze, P. Kothandaraman, P. W. H. Chan, Adv. Synth. Catal. 2018, 360, 4744.
| Crossref | GoogleScholarGoogle Scholar |
[48] Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 54, 2114.
| Crossref | GoogleScholarGoogle Scholar |
[49] X. Chen, J. T. Merrett, P. W. H. Chan, Org. Lett. 2018, 20, 1542.
| Crossref | GoogleScholarGoogle Scholar | 29481090PubMed |
[50] B. Zhang, T. Wang, Z. Zhang, J. Org. Chem. 2017, 82, 11644.
| Crossref | GoogleScholarGoogle Scholar | 28967246PubMed |
[51] P. Kothandaraman, Y. Zhao, B. R. Lee, C. J. L. Ng, J. Y. Lee, B. J. Ayers, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1385.
| Crossref | GoogleScholarGoogle Scholar |
[52] W. Rao, Sally, S. N. Berry, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 13174.
| Crossref | GoogleScholarGoogle Scholar | 25113644PubMed |
[53] W. Rao, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 713.
| Crossref | GoogleScholarGoogle Scholar | 24323953PubMed |
[54] W. T. Teo, W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 7508.
| Crossref | GoogleScholarGoogle Scholar | 23883133PubMed |
[55] C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234.
| Crossref | GoogleScholarGoogle Scholar | 23909764PubMed |
[56] W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811.
| Crossref | GoogleScholarGoogle Scholar | 22663059PubMed |
[57] P. C. Young, M. S. Hadfield, L. Arrowsmith, K. M. Macleod, R. J. Mudd, J. A. Jordan-Hore, A.-L. Lee, Org. Lett. 2012, 14, 898.
| Crossref | GoogleScholarGoogle Scholar | 22272604PubMed |
[58] P. Kothandaraman, W. Rao, S. J. Foo, P. W. H. Chan, Angew. Chem. Int. Ed. 2010, 49, 4619.
| Crossref | GoogleScholarGoogle Scholar |
[59] A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, Chem. – Eur. J. 2008, 14, 3703.
| Crossref | GoogleScholarGoogle Scholar |
[60] A. S. K. Hashmi, M. Wölfle, F. Ata, M. Hamzic, R. Salathé, W. Frey, Adv. Synth. Catal. 2006, 348, 2501.
| Crossref | GoogleScholarGoogle Scholar |
[61] V. Rautenstrauch, J. Org. Chem. 1984, 49, 950.
| Crossref | GoogleScholarGoogle Scholar |
[62] Compound 9a was found to decompose after 15 min, which prevented HRMS measurements from being performed.