Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

In Situ MOF-Templating of Rh Nanocatalysts under Reducing Conditions

Renata Lippi https://orcid.org/0000-0003-0367-8629 A B E , Campbell J. Coghlan A , Shaun C. Howard B , Christopher D. Easton B , Qinfen Gu C , Jim Patel D , Christopher J. Sumby A , Danielle F. Kennedy B and Christian J. Doonan A
+ Author Affiliations
- Author Affiliations

A Centre for Advanced Nanomaterials, Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia.

B CSIRO Manufacturing, Clayton, Vic. 3168, Australia.

C Australian Synchrotron (ANSTO), Clayton, Vic. 3168, Australia.

D CSIRO Energy, Clayton, Vic. 3168, Australia.

E Corresponding author. Email: renata.lippi@csiro.au

Australian Journal of Chemistry 73(12) 1271-1283 https://doi.org/10.1071/CH20193
Submitted: 12 June 2020  Accepted: 18 September 2020   Published: 3 November 2020

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

Manganese-based metal–organic frameworks (MOFs) metalated with Rh were used as pre-catalysts for CO2 hydrogenation. Activated in situ (80 % H2, 20 % CO2, 350°C), the resulting templated catalysts displayed CO2 conversion of up to 20 %, with CH4 as the main product. Used catalysts were compared with samples templated in 5 % H2/Ar at 350°C using powder X-ray diffraction, electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. It was found that under reducing atmosphere Rh0 nanoparticles formed and organic MOF components decomposed, which allowed growth of MnO or MnCO3 and the formation of a mesh of catalytic Rh0 nanoparticles.


References

[1]  (a) F. Zaera, Chem. Rec. 2005, 5, 133.
         | Crossref | GoogleScholarGoogle Scholar | 15889409PubMed |
      (b) E. Roduner, Chem. Soc. Rev. 2014, 43, 8226.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. S. Taylor, Proc. R. Soc. Lond., Ser. A 1925, 108, 105.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Zhang, L. Nguyen, Y. Zhu, S. Zhan, C.-K. Tsung, F. Tao, Acc. Chem. Res. 2013, 46, 1731.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) B. R. Cuenya, Thin Solid Films 2010, 518, 3127.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Catalysts 2017, 7, 59.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 481.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. a. Romero, ChemSusChem 2009, 2, 18.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. R. Batten, N. R. Champness, X. M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Ohrstrom, et al. Pure Appl. Chem. 2013, 85, 1715.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
         | Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |
      (b) Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, et al. Chem. Mater. 2014, 26, 6185.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) S. M. Cohen, Chem. Rev. 2012, 112, 970.
         | Crossref | GoogleScholarGoogle Scholar | 21916418PubMed |
      (b) J. D. Evans, C. J. Sumby, C. J. Doonan, Chem. Soc. Rev. 2014, 43, 5933.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657.
         | Crossref | GoogleScholarGoogle Scholar | 24658531PubMed |
      (b) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar | 21978134PubMed |

[8]  A. Corma, H. Garcia, F. X. L. I. Xamena, Chem. Rev. 2010, 110, 4606.
         | Crossref | GoogleScholarGoogle Scholar | 20359232PubMed |

[9]  (a) W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Song, X. Li, L. Sun, L. Wang, RSC Adv. 2015, 5, 7267.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 2017, 46, 2660.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Z. Xie, W. Xu, X. Cui, Y. Wang, ChemSusChem 2017, 10, 1645.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S.-N. Zhao, X.-Z. Song, S.-Y. Song, H.-j. Zhang, Coord. Chem. Rev. 2017, 337, 80.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Mater. Chem. Front. 2017, 1, 1709.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Y. V. Kaneti, J. Tang, R. R. Salunkhe, X. C. Jiang, A. B. Yu, K. C. W. Wu, et al. Adv. Mater. 2017, 29, 1604898.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) H. Wang, M. Liu, S. Guo, Y. Wang, X. Han, Y. Bai, Mol. Catal. 2017, 436, 120.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. P. Santos, T. A. Wezendonk, J. J. D. Jaen, A. I. Dugulan, M. A. Nasalevich, H. U. Islam, et al. Nat. Commun. 2015, 6, 6451.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Y. Niu, S. L. Liu, Y. Q. Cai, F. C. Wu, X. L. Zhao, Microporous Mesoporous Mater. 2016, 219, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  D. Xu, Y. Pan, M. Chen, Q. Pan, L. Zhu, M. Xue, et al. RSC Adv. 2017, 7, 26377.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) D. Chen, M. Huang, S. He, S. He, L. Ding, Q. Wang, et al. Appl. Clay Sci. 2016, 119, 109.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Z. Wang, X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, et al. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 7912.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Senkan, M. Kahn, S. Duan, A. Ly, C. Leidholm, Catal. Today 2006, 117, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) M. J. Jacinto, P. K. Kiyohara, S. H. Masunaga, R. F. Jardim, L. M. Rossi, Appl. Catal. A 2008, 338, 52.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) X.-R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wang, C. M. Wai, J. Mater. Chem. 2004, 14, 908.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Yan, Y. Yuan, P. J. Dyson, Chem. Commun. 2011, 47, 2529.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Karelovic, P. Ruiz, Appl. Catal. B 2012, 113–114, 237.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) R. Buchel, A. Baiker, S. E. Pratsinis, Appl Catal. A. 2014, 477, 93.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Karelovic, P. Ruiz, J. Catal. 2013, 301, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) Y. Yuan, N. Yan, P. J. Dyson, ACS Catal. 2012, 2, 1057.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. Jiang, C. Li, Ö. Dag, H. Abe, T. Takei, T. Imai, et al. Nat. Commun. 2017, 8, 15581.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Guo, Y. Zhao, H. Yuan, C. Wang, H. Jiang, G. J. Cheng, Small 2020, 16, 2000749.
         | Crossref | GoogleScholarGoogle Scholar | 32285619PubMed |

[18]  J. Li, H. Huang, Y. Li, Y. Tang, D. Mei, C. Zhong, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 20239.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) W. M. Bloch, A. Burgun, C. J. Coghlan, R. Lee, M. L. Coote, C. J. Doonan, et al. Nat. Chem. 2014, 6, 906.
         | Crossref | GoogleScholarGoogle Scholar | 25242486PubMed |
      (b) A. Burgun, C. J. Coghlan, D. M. Huang, W. Chen, S. Horike, S. Kitagawa, et al. Angew. Chem. Int. Ed. 2017, 56, 8412.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. Lippi, S. C. Howard, H. Barron, C. D. Easton, I. C. Madsen, L. J. Waddington, et al. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 12990.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  I. C. Madsen, N. V. Y. Scarlett, D. P. Riley, M. D. Raven, in Modern Diffraction Methods (Eds E. J. Mittemeijer, U. Welzel) 2012, pp. 283–320 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[22]  I. C. Madsen, N. V. Y. Scarlett, in Powder Diffraction: Theory and Practice (Eds R. E. Dinnebier, S. J. L. Billinge) 2008, pp. 298–331 (The Royal Society of Chemistry: Cambridge, UK).

[23]  (a) M. Oku, K. Hirokawa, S. Ikeda, J. Electron Spectrosc. Relat. Phenom. 1975, 7, 465.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Di Castro, G. Polzonetti, J. Electron Spectrosc. Relat. Phenom. 1989, 48, 117.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. S. Ilton, J. E. Post, P. J. Heaney, F. T. Ling, S. N. Kerisit, Appl. Surf. Sci. 2016, 366, 475.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  P. Casey, A. P. McCoy, J. Bogan, C. Byrne, L. Walsh, R. O’Connor, et al. J. Phys. Chem. C 2013, 117, 16136.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Carbon 1995, 33, 1641.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) M. J. Holgado, V. Rives, React. Kinet. Catal. Lett. 1986, 32, 215.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. L. Carter, J. A. Cusumano, J. H. Sinfelt, J. Catal. 1971, 20, 223.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. H. Sinfelt, Catal. Rev. 1970, 3, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  W. M. Bloch, C. J. Doonan, C. J. Sumby, CrystEngComm 2013, 15, 9663.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Schmitt, C. Bronnimann, E. F. Eikenberry, F. Gozzo, C. Hormann, R. Horisberger, et al. Nucl. Instrum. Methods Phys. Res. Sect A. 2003, 501, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Topas V5: General Profile and Structure Analysis Software for Powder Diffraction Data 2012 (Bruker AXS GmbH: Karlsruhe, Germany).

[30]  C. D. Easton, C. Kinnear, S. L. McArthur, T. R. Gengenbach, J. Vac. Sci. Technol. A 2020, 38, 023207.
         | Crossref | GoogleScholarGoogle Scholar |