Application of the Variable Oxygen Probe to Derivatives of 2,6-Dimethyltetrahydropyran-4-ol: Evidence for Through-Bond nO–σCC–σ*CO Interactions
Liam Oliver A , Somaiah Ragam B , Pierre Deslongchamps B , Jonathan M. White A C , Amber Hancock A and Samuel Brydon AA School of Chemistry and BIO-21 Institute, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Département de Chimie, Faculté des Sciences et de Génie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.
C Corresponding author. Email: whitejm@unimelb.edu.au
Australian Journal of Chemistry 74(3) 157-164 https://doi.org/10.1071/CH20149
Submitted: 7 May 2020 Accepted: 5 July 2020 Published: 3 August 2020
Abstract
The variable oxygen probe has been applied to axial and equatorial 4-pyranols 4 and 5 and their ester and ether derivatives. Plots of C–OR bond distance versus pKa (ROH) provided evidence for slightly stronger donation into the σ*C–OR antibonding orbital in the equatorial derivatives 5 than in the axial derivatives 4, which is consistent with the presence of a through-bond nO–σCC–σ*CO interaction in 5. Evidence in support of this interpretation was also provided by density functional theory (DFT) calculations and natural bond orbital (NBO) analyses of the various orbital interactions in the 4-pyranols 4 and 5, their protonated analogues 4·H2O+ and 5·H2O+, and the corresponding cyclohexane derivatives 6, 7, 6·H2O+, and 7·H2O+.
References
[1] (a) A. J. Briggs, R. Glenn, P. G. Jones, A. J. Kirby, P. Ramaswamy, J. Am. Chem. Soc. 1984, 106, 6200.| Crossref | GoogleScholarGoogle Scholar |
(b) R. D. Amos, N. C. Handy, P. G. Jones, A. J. Kirby, J. K. Parker, J. M. Percy, M. Der Su, J. Chem. Soc. Perkin Trans. 2 1992, 549.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. J. Green, J. Giordano, J. M. White, Aust. J. Chem. 2000, 53, 285.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. M. White, J. B. Lambert, M. Spiniello, S. A. Jones, R. W. Gable, Chem. – Eur. J. 2002, 8, 2799.
| Crossref | GoogleScholarGoogle Scholar | 12391659PubMed |
[4] B. R. Pool, J. M. White, P. P. Wolynec, J. Org. Chem. 2000, 65, 7595.
| Crossref | GoogleScholarGoogle Scholar | 11076620PubMed |
[5] W. Jackson, J. M. White, Aust. J. Chem. 2008, 61, 956.
| Crossref | GoogleScholarGoogle Scholar |
[6] B. L. Harris, J. M. White, Aust. J. Chem. 2014, 67, 1866.
| Crossref | GoogleScholarGoogle Scholar |
[7] N. L. Fifer, J. M. White, Org. Biomol. Chem. 2005, 3, 1776.
| Crossref | GoogleScholarGoogle Scholar | 15858663PubMed |
[8] S. D. Yeoh, C. E. Skene, J. M. White, J. Org. Chem. 2013, 78, 311.
| Crossref | GoogleScholarGoogle Scholar | 23215360PubMed |
[9] B. L. Harris, G. P. Savage, J. M. White, Org. Biomol. Chem. 2013, 11, 3151.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Spiniello, J. M. White, Org. Biomol. Chem. 2003, 1, 3094.
| Crossref | GoogleScholarGoogle Scholar | 14518133PubMed |
[11] (a) W. Adcock, N. A. Trout, Magn. Reson. Chem. 1998, 36, 181.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. A. Grob, R. Rich, Tetrahedron 1978, 19, 663.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Adcock, A. R. Kristic, P. J. Duggan, V. J. Shiner, J. Coope, M. W. Ensinger, J. Am. Chem. Soc. 1990, 112, 3140.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. J. Green, V. Van, J. M. White, Aust. J. Chem. 1998, 51, 555.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. B. Lambert, L. A. Salvador, J.-H. So, Organometallics 1993, 12, 697.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. Jasti, S. D. Rychonovsky, Org. Lett. 2006, 8, 2175.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. S. Wharton, G. A. Hiegel, J. Org. Chem. 1965, 30, 3254.
| Crossref | GoogleScholarGoogle Scholar |
[12] I. V. Alabugin, M. Manohoran, J. Org. Chem. 2004, 69, 9011.
| Crossref | GoogleScholarGoogle Scholar | 15609933PubMed |
[13] (a) See Chapter 8 in: CRC Handbook of Chemistry and Physics, 81st edn (Ed. D. R. Lide) 2000 (CRC Press: Boca Raton, FL).
(b) J. F. King, in The Chemistry of Sulphonic Acids, Esters and their Derivatives (Eds S. Patai, Z. Rappoport) 1991, No. 40, Ch. 6, pp. 351–399 (John Wiley & Sons: Hoboken, NJ).
(c) R. Stewart, The Proton: Applications to Organic Chemistry 1985 (Academic Press: New York, NY).
(d) E. C. Meister, M. Willeke, W. Angst, A. Togni, P. Walde, Helv. Chim. Acta 2014, 97, 1.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. P. Silverstein, S. T. Heller, J. Chem. Educ. 2017, 94, 690.
| Crossref | GoogleScholarGoogle Scholar |
[14] References [13d] and [13e] give further explanation on why the pKa of water at 25°C has previously been incorrectly stated as 15.7 and should instead be quoted as 14.
[15] L. Andrau, J. M. White, Aust. J. Chem. 2005, 58, 531.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) E. Juaristi, G. D. P. Gomes, A. O. Terent’ev, R. Notario, I. V. Alabugin, J. Am. Chem. Soc. 2017, 139, 10799.
| Crossref | GoogleScholarGoogle Scholar | 28701041PubMed |
(b) I. V. Alabugin, J. Org. Chem. 2000, 65, 3910.
| Crossref | GoogleScholarGoogle Scholar |
[17] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |
[18] G. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcok, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16 Revision B.01 2016 (Gaussian, Inc.: Wallingford, CT).
[22] A. D. Becke, J. Chem. Phys. 1997, 107, 8554.
| Crossref | GoogleScholarGoogle Scholar |
[23] H. A. Dabbagh, M. Zamani, S. Fakhree, Res. Chem. Intermed. 2013, 39, 2011.
| Crossref | GoogleScholarGoogle Scholar |
[24] B. G. Oliveira, M. L. A. A. Vasconcellos, Struct. Chem. 2009, 20, 897.
| Crossref | GoogleScholarGoogle Scholar |
[25] I. V. Alabugin, K. M. Gilmore, P. W. Peterson, WIREs Comput. Mol. Sci. 2019, 9, e1389.
| Crossref | GoogleScholarGoogle Scholar |
[26] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, NBO 7.0 2018 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).