Spontaneous Formation of a Hybrid Heterotrimer of Fe3O4-Ag2S-ZnS by Seeded-Growth Method
Shaghraf Javaid A , Wei Chen A , Guohua Jia A B and Franca Jones A BA Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences Curtin University, Bentley, Perth, WA 6102, Australia.
B Corresponding authors. Email: guohua.jia@curtin.edu.au; f.jones@curtin.edu.au
Australian Journal of Chemistry 73(10) 929-933 https://doi.org/10.1071/CH19545
Submitted: 23 October 2019 Accepted: 20 November 2019 Published: 31 March 2020
Abstract
Three-component containing hybrid heterostructures with multiple functionalities are highly desirable but difficult to synthesize. Herein, we have demonstrated the utilization of a simple seeded-growth approach for the synthesis of a hybrid heterotrimer of iron oxide–silver sulfide–zinc sulfide (Fe3O4-Ag2S-ZnS). At first, Fe3O4-Ag was synthesized by using silver nanoparticles (Ag NPs) as a seed followed by its in situ sulfurization to produce a dimer of Fe3O4-Ag2S. This dimer was successively used as a seed under controlled experimental conditions for the synthesis of Fe3O4-Ag2S-ZnS. The availability of such trimers through this approach can shed some light on the integration of entirely different functionalities in one-particle systems.
References
[1] N. Waiskopf, Y. Ben-Shahar, U. Banin, Adv. Mater. 2018, 30, 1706697.| Crossref | GoogleScholarGoogle Scholar | 29656489PubMed |
[2] U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2014, 26, 97.
| Crossref | GoogleScholarGoogle Scholar |
[3] G. Jia, U. Banin, J. Am. Chem. Soc. 2014, 136, 11121.
| Crossref | GoogleScholarGoogle Scholar | 25032504PubMed |
[4] D. A. Reddy, R. Ma, M. Y. Choi, T. K. Kim, Appl. Surf. Sci. 2015, 324, 725.
| Crossref | GoogleScholarGoogle Scholar |
[5] W. Jiang, Z. Wu, X. Yue, S. Yuan, H. Lu, B. Liang, RSC Adv. 2015, 5, 24064.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Javaid, Y. Li, D. Chen, X. Xu, Y. Pang, W. Chen, F. Wang, Z. Shao, M. Saunders, J.-P. Veder, G. Jia, F. Jones, J. Phys. Chem. C 2019, 123, 10604.
| Crossref | GoogleScholarGoogle Scholar |
[7] Q. Chen, J. Song, C. Zhou, Q. Pang, L. Zhou, Mater. Sci. Semicond. Process. 2016, 46, 53.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. M. Ziarani, M. Malmir, N. Lashgari, A. Badiei, RSC Adv. 2019, 9, 25094.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. M. Hodges, R. E. Schaak, Acc. Chem. Res. 2017, 50, 1433.
| Crossref | GoogleScholarGoogle Scholar | 28520407PubMed |
[10] J. L. Fenton, B. C. Steimle, R. E. Schaak, J. Am. Chem. Soc. 2018, 140, 6771.
| Crossref | GoogleScholarGoogle Scholar | 29788717PubMed |
[11] T. R. Gordon, R. E. Schaak, Chem. Mater. 2014, 26, 5900.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. J. Bradley, A. J. Biacchi, R. E. Schaak, Chem. Mater. 2013, 25, 1886.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Liu, S. Guo, S. Sun, X.-Z. You, Nanoscale 2015, 7, 4890.
| Crossref | GoogleScholarGoogle Scholar | 25697907PubMed |
[14] J. M. Hodges, J. R. Morse, M. E. Williams, R. E. Schaak, J. Am. Chem. Soc. 2015, 137, 15493.
| Crossref | GoogleScholarGoogle Scholar | 26599998PubMed |
[15] S. Javaid, X. Li, F. Wang, W. Chen, Y. Pang, S. Wang, G. Jia, F. Jones, J. Mater. Chem. C Mater. Opt. Electron. Devices 2019, 7, 14517.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. M. Hodges, J. R. Morse, J. L. Fenton, J. D. Ackerman, L. T. Alameda, R. E. Schaak, Chem. Mater. 2017, 29, 106.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Chem. Soc. Rev. 2019, 48, 4178.
| Crossref | GoogleScholarGoogle Scholar | 31206105PubMed |
[18] R. G. Chaudhuri, S. Paria, J. Phys. Chem. C 2013, 117, 23385.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Shen, Y. Zhang, L. Peng, Y. Du, Q. Wang, Angew. Chem. Int. Ed. 2011, 50, 7115.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Singh, J. Chaturvedi, S. Bhattacharya, RSC Adv. 2014, 4, 11469.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. Pang, R. Zhang, D. Lan, J. Ge, ACS Appl. Mater. Interfaces 2018, 10, 4929.
| Crossref | GoogleScholarGoogle Scholar | 29345458PubMed |
[22] W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swiart, P. N. Prasad, Nano Lett. 2006, 6, 875.
| Crossref | GoogleScholarGoogle Scholar | 16608302PubMed |
[23] X. Wang, Y. Liu, H. Arandiyan, H. Yang, L. Bai, J. Mujtaba, Q. Wang, S. Liu, H. Sun, Appl. Surf. Sci. 2016, 389, 240.
| Crossref | GoogleScholarGoogle Scholar |
[24] H. Abdullah, D.-H. Kuo, ACS Appl. Mater. Interfaces 2015, 7, 26941.
| Crossref | GoogleScholarGoogle Scholar | 26575792PubMed |
[25] G. Wang, Z. Li, M. Li, C. Chen, S. Lv, J. Liao, Sci. Rep. 2016, 6, 29470.
| Crossref | GoogleScholarGoogle Scholar | 27387653PubMed |
[26] D. Chen, H. Zhang, Y. Li, Y. Pang, Z. Yin, H. Sun, L.-C. Zhang, S. Wang, M. Saunders, E. Baker, G. Jia, Adv. Mater. 2018, 30, 1803351.
| Crossref | GoogleScholarGoogle Scholar | 30088297PubMed |