Diels–Alder Reactions of Chiral Sulfinylquinones: From Sterically Directed to CH–π Directed Stereoselectivity
Ka Ho Chow A , Lawrence R. Gahan A and Elizabeth H. Krenske A BA School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.
B Corresponding author. Email: e.krenske@uq.edu.au
Australian Journal of Chemistry 73(10) 934-941 https://doi.org/10.1071/CH19525
Submitted: 17 October 2019 Accepted: 25 November 2019 Published: 1 April 2020
Abstract
Density functional theory calculations were performed to determine the origins of chemoselectivity and the mechanisms of stereoinduction in sulfinylquinone Diels–Alder reactions. Computations with M06-2X-D3//B3LYP-D3 indicate that a CH–π interaction between the diene and a chiral p-tolylsulfinyl group attached to the quinone can favour addition to the more crowded diastereotopic face of the remote C=C bond. The effects of a ZnBr2 catalyst and of different sulfinyl substituents on the outcomes of sulfinylquinone Diels–Alder reactions are explored.
References
[1] (a) For reviews, see: J. L. García Ruano, J. Alemán, M. B. Cid, M. Á. Fernández-Ibáñez, M. C. Maestro, M. R. Martín, A. M. Martín-Castro, in Organosulfur Chemistry in Asymmetric Synthesis (Eds T. Toru, C. Bolm) 2008, Ch. 3, pp. 55–159 (Wiley-VCH: Weinheim).(b) M. C. Carreño, G. Hernández-Torres, M. Ribagorda, A. Urbano, Chem. Commun. 2009, 6129.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) See, for example: M. C. Carreño, J. L. García Ruano, A. Urbano, Tetrahedron Lett. 1989, 30, 4003.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. H. Chaplin, A. J. Edwards, B. L. Flynn, Org. Biomol. Chem. 2003, 1, 1842.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. A. Lanfranchi, G. Hanquet, J. Org. Chem. 2006, 71, 4854.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Latorre, A. Urbano, M. C. Carreño, Chem. Commun. 2009, 6652.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. M. del Hoyo, A. Urbano, M. C. Carreño, Org. Lett. 2016, 18, 20.
| Crossref | GoogleScholarGoogle Scholar |
[3] K. H. Chow, E. H. Krenske, Org. Biomol. Chem. 2019, 17, 8756.
| Crossref | GoogleScholarGoogle Scholar | 31553037PubMed |
[4] M. C. Carreño, J. L. García Ruano, C. Lafuente, M. A. Toledo, Tetrahedron Asymmetry 1999, 10, 1119.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. C. Carreño, J. L. García Ruano, M. A. Toledo, A. Urbano, C. Z. Remor, V. Stefani, J. Fischer, J. Org. Chem. 1996, 61, 503.
| Crossref | GoogleScholarGoogle Scholar | 11666967PubMed |
[6] M. C. Carreño, J. L. García Ruano, A. Urbano, C. Z. Remor, Y. Arroyo, J. Org. Chem. 2000, 65, 453.
| Crossref | GoogleScholarGoogle Scholar | 10813956PubMed |
[7] (a) For computational studies of quinone Diels–Alder reactions and of other stereoselective cycloadditions influenced by chiral sulfinyl groups, see: C. F. Tormena, V. Lacerda, K. T. de Oliveira, J. Braz. Chem. Soc. 2010, 21, 112.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Gracia-Vitoria, I. Osante, C. Cativiela, P. Merino, T. Tejero, J. Org. Chem. 2018, 83, 3960.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. Nieto Faza, C. Silva López, A. R. de Lera, J. Org. Chem. 2007, 72, 2617.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. López, L. Castedo, J. L. Mascareñas, J. Org. Chem. 2003, 68, 9780.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. L. García Ruano, A. Fraile, G. González, M. R. Martín, F. R. Clemente, R. Gordillo, J. Org. Chem. 2003, 68, 6522.
| Crossref | GoogleScholarGoogle Scholar |
(f) F. López, L. Castedo, J. L. Mascareñas, J. Org. Chem. 2003, 68, 9780.
| Crossref | GoogleScholarGoogle Scholar |
(g) L. F. Tietze, T. Pfeiffer, A. Schuffenhauer, Eur. J. Org. Chem. 1998, 2733.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. C. Carreño, M. P. González, K. N. Houk, J. Org. Chem. 1997, 62, 9128.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 2010, 132, 12946.
| Crossref | GoogleScholarGoogle Scholar | 20795713PubMed |
[9] H. Kruse, S. Grimme, J. Chem. Phys. 2012, 136, 154101.
| Crossref | GoogleScholarGoogle Scholar | 22519309PubMed |
[10] F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625.
| Crossref | GoogleScholarGoogle Scholar | 21516178PubMed |
[12] For a recent report demonstrating how DFT integration grids can lead to errors in free energies, beyond other well-known sources of DFT errors, see: A. N. Bootsma, S. E. Wheeler, ChemRxiv 2019,
| Crossref | GoogleScholarGoogle Scholar |
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01 2016 (Gaussian, Inc.: Wallingford, CT).
[14] (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 9944570PubMed |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |
[16] Y. Zhao, D. G. Truhlar, Phys. Chem. Chem. Phys. 2008, 10, 2813.
| Crossref | GoogleScholarGoogle Scholar | 18464998PubMed |
[17] (a) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
| Crossref | GoogleScholarGoogle Scholar | 21384027PubMed |
[20] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
| Crossref | GoogleScholarGoogle Scholar | 20394428PubMed |
[21] C. Y. Legault, CYLview 1.0b 2009 (Université de Sherbrooke: Sherbrooke). Available at: http://www.cylview.org