Insights into the Chemistry and Structural Features of the Copper(ii) 2,2′-Bipyridyl–Thiosulfate System
Eric W. Ainscough A B , Sidney S. Woodhouse A , Andrew M. Brodie A B , Graham H. Freeman A and Paul G. Plieger A CA School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
B Deceased.
C Corresponding author. Email: p.g.plieger@massey.ac.nz
Australian Journal of Chemistry 73(1) 43-48 https://doi.org/10.1071/CH19535
Submitted: 19 October 2019 Accepted: 11 November 2019 Published: 16 December 2019
Abstract
In this paper, we present our findings on a series of copper(ii) 2,2′-bipyridyl (bipy) complexes that inhibit the oxidation of thiosulfate, a current problem in the gold leaching process. The formation of six complexes, five of which have been structurally characterized by X-ray crystallography, illustrate a thermally induced, controllable switching between oxidation states, which in turn inhibits the oxidation of thiosulfate. These findings give further insight and understanding into the rich chemistry of the coinage metals and the hydrolytic processes involved with gold leaching.
References
[1] G. Senanayake, Gold Bull. 2005, 38, 170.| Crossref | GoogleScholarGoogle Scholar |
[2] G. Senanayake, Hydrometallurgy 2012, 115–116, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Aylmore, D. M. Muir, Miner. Eng. 2001, 14, 135.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. J. Fischmann, A. C. Warden, J. Black, L. Spiccia, Inorg. Chem. 2004, 43, 6568.
| Crossref | GoogleScholarGoogle Scholar | 15476353PubMed |
[5] C. Huang, J. Wu, C. Song, R. Ding, Y. Qiao, H. Hou, J. Chang, Y. Fan, Chem. Commun. 2015, 10353.
| Crossref | GoogleScholarGoogle Scholar |
[6] N. Kundu, M. Maity, P. B. Chatterjee, S. J. Teat, A. Endo, M. Chaudhury, J. Am. Chem. Soc. 2011, 133, 20104.
| Crossref | GoogleScholarGoogle Scholar | 22085134PubMed |
[7] P. A. Kumar, M. Ray, R. Mukherjee, J. Chem. Soc., Dalton Trans. 1999, 2461.
[8] G. Ondrejovic, A. Kotocova, D. Valigura, Chem. Pap. 2002, 56, 168.
[9] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th edn) 1986 (Wiley: New York, NY).
[10] G. Senanayake, Miner. Eng. 2005, 18, 995.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Y. Kovalevsky, M. Gembicky, I. V. Novozhilova, P. Coppens, Inorg. Chem. 2003, 42, 8794.
| Crossref | GoogleScholarGoogle Scholar | 14686859PubMed |
[12] G. Speier, Z. Tyeklar, P. Toth, E. Speier, S. Tisza, A. Rockenbauer, A. M. Whalen, N. Alkire, C. G. Pierpont, Inorg. Chem. 2001, 40, 5653.
| Crossref | GoogleScholarGoogle Scholar | 11599966PubMed |
[13] W. D. Harrison, B. J. Hathaway, Acta Crystallogr. B 1978, 34, 2843.
| Crossref | GoogleScholarGoogle Scholar |
[14] K. Buijs, J. Inorg. Nucl. Chem. 1962, 24, 229.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. S. Church, D. J. Evans, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 69, 256.
| Crossref | GoogleScholarGoogle Scholar | 17482867PubMed |
[16] M. B. Ferrari, G. G. Fava, C. Pelizzi, J. Chem. Soc. Chem. Commun. 1977, 8.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Wojciechowska, J. Jezierska, A. Bienko, M. Daszkiewicz, Polyhedron 2011, 30, 1547.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. Wojciechowska, A. Pietraszko, W. Bronowska, Z. Staszak, J. Jezierska, M. Cieslak-Golonka, Polyhedron 2010, 29, 2574.
| Crossref | GoogleScholarGoogle Scholar |
[19] Rigaku Americas Corporation, Crystal Clear 2005 (Rigaku Americas Corporation: The Woodlands, TX).
[20] Rigaku Corporation, PROCESS-AUTO 1998 (Rigaku Corporation: Tokyo).
[21] G. M. Sheldrick, T. R. Schneider, Methods Enzymol. 1997, 277, 319.
| Crossref | GoogleScholarGoogle Scholar | 18488315PubMed |