Effect of Substitution for Insertion of CO2 into Epoxides and Aziridines: An Ab Initio Study
Yunhan Yang A , Fenji Li A , Cuicui Yang A , Lijuan Jia A , Lijuan Yang A , Futing Xia A B C and Jinhui Peng BA Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Yunnan Minzu University, Kunming 650500, China.
B State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650500, China.
C Corresponding author. Email: xiafuting@163.com
Australian Journal of Chemistry 73(1) 30-42 https://doi.org/10.1071/CH19296
Submitted: 1 July 2019 Accepted: 28 October 2019 Published: 3 December 2019
Abstract
The insertion of CO2 into epoxides and aziridines has been studied using density functional theory (B3LYP) and ab initio (MP2) methods, and the effect of substitution for the two reactions are further explored. It is found that the reactivity of epoxides and aziridines are similar, and insertion of CO2 proceeds through a concerted mechanism. The substitutions of methyl and phenyl does not change the reaction mechanism, but the transition state for the substitution on the attacking position becomes loose with a lower free energy barrier. The substitutions of methyl and phenyl decrease the free energy barrier, with phenyl substitution having a greater affect. The results also show that the free energy barriers for the insertions of CO2 into aziridines are ~10 kcal mol−1 lower than the corresponding reactions of CO2 with epoxides.
References
[1] X. M. Han, L. J. Lee, D. L. Tomasko, Aust. J. Chem. 2005, 58, 492.| Crossref | GoogleScholarGoogle Scholar |
[2] M. H. Piao, N. Liu, Y. S. Wang, C. S. Feng, Aust. J. Chem. 2016, 69, 27.
| Crossref | GoogleScholarGoogle Scholar |
[3] Q. Q. Wang, C. Z. Chen, J. H. Zhong, B. Zhang, Z. M. Cheng, Aust. J. Chem. 2017, 70, 293.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Y. Wang, D. J. Darensbourg, Coord. Chem. Rev. 2018, 372, 85.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. C. Luo, W. Y. Zhang, Z. Yang, X. T. Zhou, H. B. Ji, J. CO Util 2017, 19, 257.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. B. Rasal, G. D. Yadav, R. Koskinen, R. Keiski, Mol. Catal. 2018, 451, 200.
| Crossref | GoogleScholarGoogle Scholar |
[7] B. Schäffner, F. Schäffner, S. P. Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554.
| Crossref | GoogleScholarGoogle Scholar | 20345182PubMed |
[8] W. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735.
| Crossref | GoogleScholarGoogle Scholar |
[9] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Green Energy Environ. 2016, 1, 18.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, ACS Catal. 2017, 7, 7231.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Du, Y. Wu, A. H. Liu, L. N. He, J. Org. Chem. 2008, 73, 4709.
| Crossref | GoogleScholarGoogle Scholar | 18473439PubMed |
[13] (a) F. Chen, M. Li, J. J. Wang, B. Dai, N. Liu, J. CO Util. 2018, 28, 181.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. N. Li, X. F. Liu, L. N. He, J. CO Util. 2019, 29, 74.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. R. Zhang, A. D. Bailey, M. E. Bucks, B. P. Murphy, Dyes Pigments 2018, 149, 167.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Fujii, H. Matsuo, J. C. Choi, T. Fujitani, K. Fujita, Tetrahedron 2018, 74, 2914.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) T. Remarchuk, E. J. Corey, Tetrahedron Lett. 2018, 59, 2256.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Prashad, Y. G. Liu, H. Y. Kim, O. Repic, T. J. Blacklock, Tetrahedron Asymmetry 1999, 10, 3479.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. E. Gawley, S. A. Campagna, M. Santiago, T. Ren, Tetrahedron Asymmetry 2002, 13, 29.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Inoue, H. Koinuma, T. Tsuruta, J. Polym. Sci. B 1969, 7, 287.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Hayashi, A. P. Côté, H. Furukawa, M. O. O. M. Yaghi, Nat. Mater. 2007, 6, 501.
| Crossref | GoogleScholarGoogle Scholar | 17529969PubMed |
[17] Y. Xie, Z. F. Zhang, T. Jiang, J. L. He, B. X. Han, T. B. Wu, K. L. Ding, Angew. Chem. Int. Ed. 2007, 46, 7255.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. A. Moggach, T. D. Bennett, A. K. Cheetham, Angew. Chem. Int. Ed. 2009, 121, 7221.
| Crossref | GoogleScholarGoogle Scholar |
[19] D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Duren, J. Am. Chem. Soc. 2011, 133, 8900.
| Crossref | GoogleScholarGoogle Scholar | 21553843PubMed |
[20] S. Udayakumar, M. K. Lee, H. L. Shim, S. W. Park, Catal. Commun. 2009, 10, 659.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. N. Han, S. W. Park, D. W. Park, Energy Environ. Sci. 2009, 2, 1286.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. Tu, R. J. Davis, J. Catal. 2001, 199, 85.
| Crossref | GoogleScholarGoogle Scholar |
[23] E. J. Doskocil, Microporous Mesoporous Mater. 2004, 76, 177.
| Crossref | GoogleScholarGoogle Scholar |
[24] E. J. Doskocil, J. Phys. Chem. B 2005, 109, 2315.
| Crossref | GoogleScholarGoogle Scholar | 16851225PubMed |
[25] S. Kumar, K. Prasad, J. M. Gil, A. J. F. N. Sobral, J. Koh, Carbohydr. Polym. 2018, 198, 401.
| Crossref | GoogleScholarGoogle Scholar | 30093015PubMed |
[26] B. Li, Inorg. Chem. Commun. 2018, 88, 56.
| Crossref | GoogleScholarGoogle Scholar |
[27] R. Babu, S. H. Kim, A. C. Kathalikkattil, R. R. Kuruppathparambil, D. W. Kim, S. J. Cho, D. W. Park, Appl. Catal. A Gen. 2017, 544, 126.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. Q. Wang, D. L. Kong, J. Y. Chen, F. Cai, L. N. He, J. Mol. Catal. Chem. 2006, 249, 143.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. F. Kurisingal, Y. Rachuri, Y. J. Gu, G. H. Kim, D. W. Park, Appl. Catal. A Gen. 2019, 571, 1.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Noh, Y. Kim, H. Park, J. Lee, M. Yoon, M. H. Park, Y. Kim, M. Kim, J. Ind. Eng. Chem. 2018, 64, 478.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. U. Kim, R. Babu, R. Roshan, D. W. Park, Appl. Catal. A Gen. 2017, 538, 59.
| Crossref | GoogleScholarGoogle Scholar |
[32] C. H. Guo, H. S. Wu, X. M. Zhang, J. Y. Song, X. Zhang, J. Phys. Chem. A 2009, 113, 6710.
| Crossref | GoogleScholarGoogle Scholar | 19469523PubMed |
[33] X. M. Zhang, C. H. Guo, J. F. Jia, H. S. Wu, J. Mol. Struct.: THEOCHEM 2009, 916, 125.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[35] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).
[36] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. S. Gordon, Chem. Phys. Lett. 1980, 76, 163.
| Crossref | GoogleScholarGoogle Scholar |
[38] C. Gonzalez, H. B. Schlehel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar |
[39] C. Gonzalez, H. B. Schlehel, J. Phys. Chem. A 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar |
[40] K. B. Wiberg, Tetrahedron 1968, 24, 1083.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. D. Mohammadi, M. Hamzehloo, Comput. Theor. Chem. 2018, 1144, 26.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. Moyano, M. A. Pericas, E. Valenti, J. Org. Chem. 1989, 54, 573.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, Version D. 01 2005 (Gaussian, Inc.: Pittsburgh, PA).
[44] R. Omidirad, K. Azizi, J. Mol. Graph. Model. 2019, 93, 107448.
| Crossref | GoogleScholarGoogle Scholar | 31518949PubMed |
[45] H. Eyring, J. Chem. Phys. 1935, 3, 107.
| Crossref | GoogleScholarGoogle Scholar |
[46] F. Castro-Gómez, G. Salassa, A. W. Kleij, C. Bo, Chem. – Eur. J. 2013, 19, 6289.
| Crossref | GoogleScholarGoogle Scholar | 23512222PubMed |
[47] F. A. Carey, Organic Chemistry, 4th edn 2000 (The McGraw-Hill Companies, Inc.: New York, NY).