A Visible Light Photoredox Catalysed Radical Pictet-Spengler Reaction*
Theerada Seehamongkol A , Tyra H. Horngren A , Mohammed A. M. Alhajji A , Joshua Almond-Thynne B , Milena L. Czyz A , Anthony J. Barrett B and Anastasios Polyzos A C DA School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Department of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK.
C CSIRO Manufacturing, Research Way, Clayton, Vic. 3168, Australia.
D Corresponding author. Email: anastasios.polyzos@unimelb.edu.au
Australian Journal of Chemistry 73(3) 189-194 https://doi.org/10.1071/CH19423
Submitted: 1 September 2019 Accepted: 1 October 2019 Published: 22 November 2019
Abstract
A methodology for a radical Pictet–Spengler reaction promoted by visible light photoredox catalysis is described. This strategy furnishes tetrahydroisoquinoline derivatives bearing electron poor and electron rich substituents. The reaction proceeds at room temperature and with excellent regioselectivity for the 6-endo intramolecular cyclisation. This radical approach provides a complementary method for the synthesis of the tetrahydroisoquinoline scaffold with substitution patterns inaccessible via established thermal transformations.
References
[1] (a) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.| Crossref | GoogleScholarGoogle Scholar | 25255204PubMed |
(b) Y. Zhang, C. Liu, C. J. Chou, X. Wang, Y. Jia, W. Xu, Chem. Biol. Drug Des. 2013, 82, 125.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol. 2010, 14, 347.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. P. Michael, Nat. Prod. Rep. 2008, 25, 166.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030.
| Crossref | GoogleScholarGoogle Scholar |
[3] W. M. Whaley, T. R. Govindachari, Org. React. 2011, 74.
[4] C. Zheng, Z.-L. Xia, S.-L. You, Chem 2018, 4, 1952.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Stöckigt, A. P. Antonchick, F. Wu, H. Waldmann, Angew. Chem. Int. Ed. 2011, 50, 8538.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Heravi, V. Zadsirjan, M. Malmir, Molecules 2018, 23, 943.
[6] (a) S. Takano, M. Suzuki, A. Kijima, K. Ogasawara, Chem. Lett. 1990, 19, 315.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Tomaszewski, J. Warkentin, N. Werstiuk, Aust. J. Chem. 1995, 48, 291.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. K. Jackl, I. Kreituss, J. W. Bode, Org. Lett. 2016, 18, 1713.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Tomaszewski, J. Warkentin, Tetrahedron Lett. 1992, 33, 2123.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Viswanathan, E. N. Prabhakaran, M. A. Plotkin, J. N. Johnston, J. Am. Chem. Soc. 2003, 125, 163.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
| Crossref | GoogleScholarGoogle Scholar | 23509883PubMed |
(b) J. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898.
| Crossref | GoogleScholarGoogle Scholar |
(e) C.-S. Wang, P. H. Dixneuf, J.-F. Soulé, Chem. Rev. 2018, 118, 7532.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019, 1, 111.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem. 2012, 4, 854.
| Crossref | GoogleScholarGoogle Scholar | 23001000PubMed |
(b) I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016, 49, 1566.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. L. Czyz, G. K. Weragoda, R. Monaghan, T. U. Connell, M. Brzozowski, A. D. Scully, J. Burton, D. W. Lupton, A. Polyzos, Org. Biomol. Chem. 2018, 16, 1543.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Kim, C. Lee, Angew. Chem. Int. Ed. 2012, 51, 12303.
| Crossref | GoogleScholarGoogle Scholar |
[9] T. Koike, M. Akita, Inorg. Chem. Front. 2014, 1, 562.
| Crossref | GoogleScholarGoogle Scholar |
[10] I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725.
| Crossref | GoogleScholarGoogle Scholar | 25378618PubMed |
[11] (a) D. J. van As, T. U. Connell, M. Brzozowski, A. D. Scully, A. Polyzos, Org. Lett. 2018, 20, 905.
| Crossref | GoogleScholarGoogle Scholar | 29381072PubMed |
(b) X. Guo, Y. Okamoto, M. R. Schreier, T. R. Ward, O. S. Wenger, Chem. Sci. 2018, 9, 5052.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Wang, M. Ma, X. Gong, X. Fan, P. J. Walsh, Org. Lett. 2019, 21, 27.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. N. Lee, M.-Y. Ngai, Chem. Commun. 2017, 53, 13093.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 8828.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. Qi, Y. Chen, Angew. Chem. Int. Ed. 2016, 55, 13312.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. Wang, M. Ma, X. Gong, G. B. Panetti, X. Fan, P. J. Walsh, Org. Lett. 2018, 20, 2433.
| Crossref | GoogleScholarGoogle Scholar |