Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

What are the Potential Sites of DNA Attack by N-Acetyl-p-benzoquinone Imine (NAPQI)?

Siqi Li A , Michael G. Leeming A , Bun Chan https://orcid.org/Chan 0000-0002-0082-5497 B and Richard A. J. O’Hair https://orcid.org/0000-0002-8044-0502 A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Vic. 3010, Australia.

B Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.

C Corresponding author. Email: rohair@unimelb.edu.au

Australian Journal of Chemistry 73(3) 180-188 https://doi.org/10.1071/CH19361
Submitted: 31 July 2019  Accepted: 25 September 2019   Published: 12 November 2019

Abstract

Metabolic bioactivation of small molecules can produce electrophilic metabolites that can covalently modify proteins and DNA. Paracetamol (APAP) is a commonly used over-the-counter analgesic, and its hepatotoxic side effects have been postulated to be due to the formation of the electrophilic metabolite N-acetylbenzoquinone imine (NAPQI). It has been established that NAPQI reacts to form covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. While there have been scattered reports that APAP can form adducts with DNA the nature of these adducts have not yet been fully characterised. Here the four deoxynucleosides, deoxyguanosine (dG), deoxyadenosine (dA), deoxycytidine (dC), and deoxythymidine (dT) were reacted with NAPQI and the formation of adducts was profiled using liquid chromatography–mass spectrometry with positive-ion mode electrospray ionisation and collision-induced dissociation. Covalent adducts were detected for dG, dA, and dC and tandem mass spectrometry (MS/MS) spectra revealed common neutral losses of deoxyribose (116 amu) arising from cleavage of the glyosidic bond with formation of the modified nucleobase. Of the four deoxynucleosides, dC proved to be the most reactive, followed by dG and dA. A pH dependence was found, with greater reactivity being observed at pH 5.5. The results of density functional theory calculations aimed at understanding the relative reactivities of the four deoxynucleosides towards NAPQI are described.


References

[1]  L. E. Prescott, Paracetamol (Acetaminophen): A Critical Bibliographic Review 1996 (Taylor & Francis: London).

[2]  J. A. Hinson, Environ. Health Perspect. 1983, 49, 71.
         | Crossref | GoogleScholarGoogle Scholar | 6339229PubMed |

[3]  D. J. Miner, P. T. Kissinger, Biochem. Pharmacol. 1979, 28, 3285.
         | Crossref | GoogleScholarGoogle Scholar | 526335PubMed |

[4]  D. C. Dahlin, G. T. Miwa, Y. H. L. Anthony, S. D. Nelson, Proc. Natl. Acad. Sci. USA 1984, 81, 1327.
         | Crossref | GoogleScholarGoogle Scholar | 6424115PubMed |

[5]  D. J. Jollow, J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, B. B. Brodie, J. Pharmacol. Exp. Ther. 1973, 187, 195.
         | 4746327PubMed |

[6]  S. D. Cohen, E. A. Khairallah, Drug Metab. Rev. 1997, 29, 59.
         | Crossref | GoogleScholarGoogle Scholar | 9187511PubMed |

[7]  J. L. Holtzman, Drug Metab. Rev. 1995, 27, 277.
         | Crossref | GoogleScholarGoogle Scholar | 7641580PubMed |

[8]  M. G. Leeming, L. F. Gamon, U. Wille, W. A. Donald, R. A. J. O’Hair, Chem. Res. Toxicol. 2015, 28, 2224.
         | Crossref | GoogleScholarGoogle Scholar | 26523953PubMed |

[9]  U. Rannug, J. A. Holme, J. K. Hongslo, R. Srám, Mutat. Res. 1995, 327, 179.
         | Crossref | GoogleScholarGoogle Scholar | 7870087PubMed |

[10]  S. Plattner, R. Erb, F. Pitterl, H.-J. Brouwer, H. Oberacher, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 883–884, 198.
         | Crossref | GoogleScholarGoogle Scholar | 22000962PubMed |

[11]  L. K. Rogers, B. Moorthy, C. V. Smith, Chem. Res. Toxicol. 1997, 10, 470.
         | Crossref | GoogleScholarGoogle Scholar | 9114986PubMed |

[12]  I. Klopčič, M. S. Dolenc, Chem. Res. Toxicol. 2019, 32, 1.
         | Crossref | GoogleScholarGoogle Scholar | 30500181PubMed |

[13]  I. C. Calder, M. J. Creek, P. J. Williams, C. C. Funder, C. R. Green, K. N. Ham, J. Med. Chem. 1973, 16, 499.
         | Crossref | GoogleScholarGoogle Scholar | 4718465PubMed |

[14]  C. R. Fernando, I. C. Calder, K. N. Ham, J. Med. Chem. 1980, 23, 1153.
         | Crossref | GoogleScholarGoogle Scholar | 7452663PubMed |

[15]  I. A. Blair, A. R. Boobis, D. S. Davies, T. M. Cresp, Tetrahedron Lett. 1980, 21, 4947.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. C. Dahlin, S. D. Nelson, J. Med. Chem. 1982, 25, 885.
         | Crossref | GoogleScholarGoogle Scholar | 7120276PubMed |

[17]  G. M. Rosen, E. J. Rauckman, S. P. Ellington, D. C. Dahlin, J. L. Christie, S. D. Nelson, Mol. Pharmacol. 1984, 25, 151.
         | 6323948PubMed |

[18]  B. Coles, I. Wilson, P. Wardman, J. A. Hinson, S. D. Nelson, B. Ketterer, Arch. Biochem. Biophys. 1988, 264, 253.
         | Crossref | GoogleScholarGoogle Scholar | 3395122PubMed |

[19]  J. J. Van Benschoten, J. Y. Lewis, W. R. Heineman, D. A. Roston, P. T. Kissinger, J. Chem. Educ. 1983, 60, 772.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) M. Novak, G. A. Bonham, J. J. Mulero, M. Pelecanou, J. N. Zemis, J. M. Buccigross, J. Am. Chem. Soc. 1989, 111, 4447.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Novak, K. A. Martin, J. Org. Chem. 1991, 56, 1585.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Taxak, K. Chaitanya Prasad, P. V. Bharatam, Comput. Theor. Chem. 2013, 1007, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. P. Glover, J. H. Lamb, P. B. Farmer, Rapid Commun. Mass Spectrom. 1998, 12, 368.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  P. Wang, J. Gao, G. Li, O. Shimelis, R. W. Giese, Chem. Res. Toxicol. 2012, 25, 2737.
         | Crossref | GoogleScholarGoogle Scholar | 23113579PubMed |

[24]  M. I. H. Schmied-Tobies, H. Paschke, T. Reemtsma, Chemosphere 2016, 151, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. L. Bolton, T. Dunlap, Chem. Res. Toxicol. 2017, 30, 13.
         | Crossref | GoogleScholarGoogle Scholar | 27617882PubMed |

[26]  L. Jowa, G. Witz, R. Snyder, S. Winkle, G. F. Kalf, J. Appl. Toxicol. 1990, 10, 47.
         | Crossref | GoogleScholarGoogle Scholar | 2335711PubMed |

[27]  A. Chenna, B. Singer, Chem. Res. Toxicol. 1995, 8, 865.
         | Crossref | GoogleScholarGoogle Scholar | 7492736PubMed |

[28]  K. Pongracz, W. J. Bodell, Chem. Res. Toxicol. 1996, 9, 593.
         | Crossref | GoogleScholarGoogle Scholar | 8728503PubMed |

[29]  I. Linhart, P. Mikeš, E. Frantík, J. Mráz, Chem. Res. Toxicol. 2011, 24, 383.
         | Crossref | GoogleScholarGoogle Scholar | 21247211PubMed |

[30]  S. Balbo, R. J. Turesky, P. W. Villalta, Chem. Res. Toxicol. 2014, 27, 356.
         | Crossref | GoogleScholarGoogle Scholar | 24437709PubMed |

[31]  R. Morfin, I. Leav, P. Ofner, J. Orr, Fed. Proc. 1970, 29, 247.

[32]  M. G. Leeming, A. P. Isaac, B. J. Pope, N. Cranswick, C. E. Wright, J. Ziogas, Anal. Chem. 2015, 87, 4104.
         | Crossref | GoogleScholarGoogle Scholar | 25818563PubMed |

[33]  W. Emmett Braselton, J. C. Orr, L. L. Engel, Anal. Biochem. 1973, 53, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. G. Leeming, N. Cranswick, C. E. Wright, J. Ziogas, T. J. O’Brien, W. A. Donald, R. A. J. O’Hair, Int. J. Mass Spectrom. 2019, 444, 116187.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. Hosaka, T. Honda, S. H. Lee, T. Oe, Anal. Bioanal. Chem. 2018, 410, 3847.
         | Crossref | GoogleScholarGoogle Scholar | 29654341PubMed |

[36]  J. Liu, S. Cao, B. Jia, D. Wei, X. Liao, J. Lu, Int. J. Mass Spectrom. 2009, 282, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. R. Wu, Y. Chen, M. T. Rodgers, Phys. Chem. Chem. Phys. 2016, 18, 2968.
         | Crossref | GoogleScholarGoogle Scholar | 26740232PubMed |

[38]  D. Gillingham, S. Geigle, O. Anatole von Lilienfeld, Chem. Soc. Rev. 2016, 45, 2637.
         | Crossref | GoogleScholarGoogle Scholar | 26992131PubMed |

[39]  P. F. Thomson, P. Lagisetty, J. Balzarini, E. De Clercq, M. K. Lakshman, Adv. Synth. Catal. 2010, 352, 1728.
         | Crossref | GoogleScholarGoogle Scholar | 21818182PubMed |

[40]  T. Takamura-Enya, S. Enomoto, K. Wakabayashi, J. Org. Chem. 2006, 71, 5599.
         | Crossref | GoogleScholarGoogle Scholar | 16839139PubMed |

[41]  R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, N. M. R. Nomenclature, Solid State Nucl. Magn. Reson. 2002, 22, 458.
         | Crossref | GoogleScholarGoogle Scholar | 12637147PubMed |

[42]  R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Solid State Nucl. Magn. Reson. 2008, 33, 41.
         | Crossref | GoogleScholarGoogle Scholar | 18353619PubMed |

[43]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision B.01 2009 (Gaussian, Inc.: Wallingford, CT).

[44]  T. A. Halgren, J. Comput. Chem. 1996, 17, 490.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  W. J. Hehre, Spartan 16 2016 (Wavefunction, Inc.: Irvine, CA).

[46]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |

[47]  N. Mardirossian, M. Head-Gordon, Mol. Phys. 2017, 115, 2315.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  X Li, L Sanche, M. D. Sevilla, Radiat. Res. 2006, 165, 721.
         | Crossref | GoogleScholarGoogle Scholar | 16802873PubMed |

[49]  C. E. Crespo-Hernández, D. M. Close, L Gorb, J Leszczynski, J. Phys. Chem. B 2007, 111, 5386.
         | Crossref | GoogleScholarGoogle Scholar | 17447808PubMed |

[50]  B. Chan, J. Chem. Theory Comput. 2017, 13, 6052.
         | Crossref | GoogleScholarGoogle Scholar | 29116781PubMed |