Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods*
Amir Karton AA School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia. Email: amir.karton@uwa.edu.au
Australian Journal of Chemistry 72(8) 607-613 https://doi.org/10.1071/CH19276
Submitted: 17 June 2019 Accepted: 27 June 2019 Published: 18 July 2019
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298 K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJ mol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0 kcal mol−1 (1 kcal mol−1 = 4.184 kJ mol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJ mol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z + CCSD/jul-cc-pVTZ + (T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11 kJ mol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298 K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJ mol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64 kJ mol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38 kJ mol−1).
References
[1] E. Nir, C. Janzen, P. Imhof, K. Kleinermanns, M. S. de Vries, J. Chem. Phys. 2001, 115, 4604.| Crossref | GoogleScholarGoogle Scholar |
[2] F. Piuzzi, M. Mons, I. Dimicoli, B. Tardivel, Q. Zhao, Chem. Phys. 2001, 270, 205.
| Crossref | GoogleScholarGoogle Scholar |
[3] B. Mennucci, A. Toniolo, J. Tomasi, J. Phys. Chem. A 2001, 105, 7126.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Mons, I. Dimicoli, F. Piuzzi, B. Tardivel, M. Elhamine, J. Phys. Chem. A 2002, 106, 5088.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Hanus, F. Ryjacek, M. Kabelac, T. Kubar, T. V. Bogdan, S. A. Trygubenko, P. Hobza, J. Am. Chem. Soc. 2003, 125, 7678.
| Crossref | GoogleScholarGoogle Scholar | 12812509PubMed |
[6] M. Piacenza, S. Grimme, J. Comput. Chem. 2004, 25, 83.
| Crossref | GoogleScholarGoogle Scholar | 14634996PubMed |
[7] X. Yang, X. B. Wang, E. R. Vorpagel, L. S. Wang, Proc. Natl. Acad. Sci. USA 2004, 101, 17588.
| Crossref | GoogleScholarGoogle Scholar | 15591345PubMed |
[8] M. Haranczyk, M. Gutowski, J. Am. Chem. Soc. 2005, 127, 699.
| Crossref | GoogleScholarGoogle Scholar | 15643895PubMed |
[9] L. Gorb, A. Kaczmarek, A. Gorb, A. J. Sadlej, J. Leszczynski, J. Phys. Chem. B 2005, 109, 13770.
| Crossref | GoogleScholarGoogle Scholar | 16852725PubMed |
[10] M. K. Shukla, J. Leszczynski, J. Phys. Chem. A 2005, 109, 7775.
| Crossref | GoogleScholarGoogle Scholar | 16834154PubMed |
[11] G. K. Forde, A. E. Forde, G. Hill, A. Ford, A. Nazario, J. Leszczynski, J. Phys. Chem. B 2006, 110, 15564.
| Crossref | GoogleScholarGoogle Scholar | 16884280PubMed |
[12] M. K. Shukla, J. Leszczynski, Chem. Phys. Lett. 2006, 429, 261.
| Crossref | GoogleScholarGoogle Scholar |
[13] W. Liang, H. Li, X. Hu, S. Han, Chem. Phys. 2006, 328, 93.
| Crossref | GoogleScholarGoogle Scholar |
[14] D. B. Jones, F. Wang, D. A. Winkler, M. J. Brunger, Biophys. Chem. 2006, 121, 105.
| Crossref | GoogleScholarGoogle Scholar | 16464529PubMed |
[15] M. Y. Choi, R. E. Miller, J. Am. Chem. Soc. 2006, 128, 7320.
| Crossref | GoogleScholarGoogle Scholar | 16734487PubMed |
[16] K. Seefeld, R. Brause, T. Häber, K. Kleinermanns, J. Phys. Chem. A 2007, 111, 6217.
| Crossref | GoogleScholarGoogle Scholar | 17585845PubMed |
[17] O. Plekan, V. Feyer, R. Richter, M. Coreno, G. Vall-llosera, K. C. Prince, A. B. Trofimov, I. L. Zaytseva, T. E. Moskovskaya, E. V. Gromov, J. Schirmer, J. Phys. Chem. A 2009, 113, 9376.
| Crossref | GoogleScholarGoogle Scholar | 19634878PubMed |
[18] K. B. Bravaya, O. Kostko, S. Dolgikh, A. Landau, M. Ahmed, A. I. Krylov, J. Phys. Chem. A 2010, 114, 12305.
| Crossref | GoogleScholarGoogle Scholar | 21038927PubMed |
[19] Z. Yang, P. Duffy, Q. Zhu, M. Takahashi, F. Wang, J. Phys. At. Mol. Opt. Phys. 2015, 48, 205101.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. Lu, J. Liu, Phys. Chem. Chem. Phys. 2016, 18, 32222.
| Crossref | GoogleScholarGoogle Scholar | 27849082PubMed |
[21] Y. Sun, W. Zhou, M. M. Moe, J. Liu, Phys. Chem. Chem. Phys. 2018, 20, 27510.
| Crossref | GoogleScholarGoogle Scholar | 30362479PubMed |
[22] A. Dang, Y. Liu, F. Turecek, J. Phys. Chem. A 2019, 123, 3272.
| Crossref | GoogleScholarGoogle Scholar | 30912657PubMed |
[23] A. A. Kroeger, A. Karton, J. Comput. Chem. 2019, 40, 630.
| Crossref | GoogleScholarGoogle Scholar | 30368841PubMed |
[24] A. Karton, J. M. L. Martin, J. Chem. Phys. 2012, 136, 124114.
| Crossref | GoogleScholarGoogle Scholar | 22612114PubMed |
[25] A. Karton, L.-J. Yu, M. K. Kesharwani, J. M. L. Martin, Theor. Chem. Acc. 2014, 133, 1483.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Karton, P. R. Schreiner, J. M. L. Martin, J. Comput. Chem. 2016, 37, 49.
| Crossref | GoogleScholarGoogle Scholar | 26096132PubMed |
[27] A. Karton, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 292.
| Crossref | GoogleScholarGoogle Scholar |
[28] N. Sylvetsky, K. A. Peterson, A. Karton, J. M. L. Martin, J. Chem. Phys. 2016, 144, 214101.
| Crossref | GoogleScholarGoogle Scholar | 27276939PubMed |
[29] A. Karton, N. Sylvetsky, J. M. L. Martin, J. Comput. Chem. 2017, 38, 2063.
| Crossref | GoogleScholarGoogle Scholar | 28675494PubMed |
[30] E. I. Izgorodina, M. L. Coote, L. Radom, J. Phys. Chem. A 2005, 109, 7558.
| Crossref | GoogleScholarGoogle Scholar | 16834125PubMed |
[31] S. Grimme, Angew. Chem. Int. Ed. 2006, 45, 4460.
| Crossref | GoogleScholarGoogle Scholar |
[32] M. D. Wodrich, C. Corminboeuf, P. R. Schleyer, Org. Lett. 2006, 8, 3631.
| Crossref | GoogleScholarGoogle Scholar | 16898778PubMed |
[33] M. D. Wodrich, C. Corminboeuf, P. R. Schreiner, A. A. Fokin, P. R. Schleyer, Org. Lett. 2007, 9, 1851.
| Crossref | GoogleScholarGoogle Scholar | 17417862PubMed |
[34] P. R. Schreiner, Angew. Chem. Int. Ed. 2007, 46, 4217.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. Grimme, M. Steinmetz, M. Korth, J. Org. Chem. 2007, 72, 2118.
| Crossref | GoogleScholarGoogle Scholar | 17286442PubMed |
[36] S. E. Wheeler, K. N. Houk, P. V. R. Schleyer, W. D. Allen, J. Am. Chem. Soc. 2009, 131, 2547.
| Crossref | GoogleScholarGoogle Scholar | 19182999PubMed |
[37] A. Karton, D. Gruzman, J. M. L. Martin, J. Phys. Chem. A 2009, 113, 8434.
| Crossref | GoogleScholarGoogle Scholar | 19569667PubMed |
[38] S. Grimme, Org. Lett. 2010, 12, 4670.
| Crossref | GoogleScholarGoogle Scholar | 20863101PubMed |
[39] R. O. Ramabhadran, K. Raghavachari, J. Chem. Theory Comput. 2011, 7, 2094.
| Crossref | GoogleScholarGoogle Scholar | 26606481PubMed |
[40] R. O. Ramabhadran, K. Raghavachari, J. Phys. Chem. A 2012, 116, 7531.
| Crossref | GoogleScholarGoogle Scholar | 22571375PubMed |
[41] R. J. O’Reilly, A. Karton, L. Radom, Int. J. Quantum Chem. 2012, 112, 1862.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. Karton, J. M. L. Martin, Mol. Phys. 2012, 110, 2477.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. D. Wodrich, C. Corminboeuf, S. E. Wheeler, J. Phys. Chem. A 2012, 116, 3436.
| Crossref | GoogleScholarGoogle Scholar | 22385306PubMed |
[44] S. E. Wheeler, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 204.
| Crossref | GoogleScholarGoogle Scholar |
[45] L. J. Yu, A. Karton, Chem. Phys. 2014, 441, 166.
| Crossref | GoogleScholarGoogle Scholar |
[46] A. Karton, B. Chan, K. Raghavachari, L. Radom, J. Phys. Chem. A 2013, 117, 1834.
| Crossref | GoogleScholarGoogle Scholar | 23343032PubMed |
[47] A. Karton, J. Comput. Chem. 2017, 38, 370.
| Crossref | GoogleScholarGoogle Scholar | 27859494PubMed |
[48] C. Hättig, W. Klopper, A. Köhn, D. P. Tew, Chem. Rev. 2012, 112, 4.
| Crossref | GoogleScholarGoogle Scholar | 22206503PubMed |
[49] K. A. Peterson, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2008, 128, 084102.
| Crossref | GoogleScholarGoogle Scholar | 18513018PubMed |
[50] J. Noga, S. Kedžuch, J. Šimunek, J. Chem. Phys. 2007, 127, 034106.
| Crossref | GoogleScholarGoogle Scholar | 17655430PubMed |
[51] G. Knizia, H.-J. Werner, J. Chem. Phys. 2008, 128, 154103.
| Crossref | GoogleScholarGoogle Scholar | 18433186PubMed |
[52] T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106.
| Crossref | GoogleScholarGoogle Scholar | 18081383PubMed |
[53] J. M. L. Martin, G. Oliveira, J. Chem. Phys. 1999, 111, 1843.
| Crossref | GoogleScholarGoogle Scholar |
[54] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar |
[55] R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar |
[56] E. Papajak, D. G. Truhlar, J. Chem. Theory Comput. 2011, 7, 10.
| Crossref | GoogleScholarGoogle Scholar | 26606214PubMed |
[57] S. Ten-no, J. Noga, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 114.
| Crossref | GoogleScholarGoogle Scholar |
[58] S. Ten-no, Chem. Phys. Lett. 2004, 398, 56.
| Crossref | GoogleScholarGoogle Scholar |
[59] H.-J. Werner, T. B. Adler, F. R. Manby, J. Chem. Phys. 2007, 126, 164102.
| Crossref | GoogleScholarGoogle Scholar | 17552756PubMed |
[60] G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 054104.
| Crossref | GoogleScholarGoogle Scholar | 19206956PubMed |
[61] K. A. Peterson, T. H. Dunning, J. Chem. Phys. 2002, 117, 10548.
| Crossref | GoogleScholarGoogle Scholar |
[62] M. Douglas, N. M. Kroll, Ann. Phys. 1974, 82, 89.
| Crossref | GoogleScholarGoogle Scholar |
[63] B. A. Hess, Phys. Rev. A 1986, 33, 3742.
| Crossref | GoogleScholarGoogle Scholar |
[64] W. A. de Jong, R. J. Harrison, D. A. Dixon, J. Chem. Phys. 2001, 114, 48.
| Crossref | GoogleScholarGoogle Scholar |
[65] J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, W. J. Lauderdale, F. Lipparini, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, CFOUR 2015. Available at: http://www.cfour.de
[66] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklaß, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, M. Welborn, MOLPRO 2016. Available at http://www.molpro.net
[67] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242.
| Crossref | GoogleScholarGoogle Scholar |
[68] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 9944570PubMed |
[69] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[70] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[71] M. K. Kesharwani, B. Brauer, J. M. L. Martin, J. Phys. Chem. A 2015, 119, 1701.
| Crossref | GoogleScholarGoogle Scholar | 25296165PubMed |
[72] L. A. Curtiss, P. C. Redfern, K. Raghavachari, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 810.
| Crossref | GoogleScholarGoogle Scholar |
[73] J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
| Crossref | GoogleScholarGoogle Scholar |
[74] K. A. Peterson, D. Feller, D. A. Dixon, Theor. Chem. Acc. 2012, 131, 1079.
| Crossref | GoogleScholarGoogle Scholar |
[75] T. Helgaker, W. Klopper, D. P. Tew, Mol. Phys. 2008, 106, 2107.
| Crossref | GoogleScholarGoogle Scholar |
[76] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108.
| Crossref | GoogleScholarGoogle Scholar | 17343441PubMed |
[77] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 127, 124105.
| Crossref | GoogleScholarGoogle Scholar | 17902891PubMed |
[78] B. Chan, J. Deng, L. Radom, J. Chem. Theory Comput. 2011, 7, 112.
| Crossref | GoogleScholarGoogle Scholar | 26606224PubMed |
[79] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, 109, 7764.
| Crossref | GoogleScholarGoogle Scholar |
[80] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys. 1999, 110, 4703.
| Crossref | GoogleScholarGoogle Scholar |
[81] A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650.
| Crossref | GoogleScholarGoogle Scholar |
[82] J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822.
| Crossref | GoogleScholarGoogle Scholar |
[83] J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1996, 104, 2598.
| Crossref | GoogleScholarGoogle Scholar |
[84] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision A.01 2009 (Gaussian, Inc.: Wallingford, CT).
[85] B. Chan, L. Radom, J. Chem. Theory Comput. 2016, 12, 3774.
| Crossref | GoogleScholarGoogle Scholar | 27471908PubMed |
[86] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett. 1998, 286, 243.
| Crossref | GoogleScholarGoogle Scholar |
[87] D. Manna, M. K. Kesharwani, N. Sylvetsky, J. M. L. Martin, J. Chem. Theory Comput. 2017, 13, 3136.
| Crossref | GoogleScholarGoogle Scholar | 28530805PubMed |
[88] B. Brauer, M. K. Kesharwani, S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2016, 18, 20905.
| Crossref | GoogleScholarGoogle Scholar | 26950084PubMed |
[89] M. K. Kesharwani, A. Karton, J. M. L. Martin, J. Chem. Theory Comput. 2016, 12, 444.
| Crossref | GoogleScholarGoogle Scholar | 26653705PubMed |
[90] L. Goerigk, A. Karton, J. M. L. Martin, L. Radom, Phys. Chem. Chem. Phys. 2013, 15, 7028.
| Crossref | GoogleScholarGoogle Scholar | 23403537PubMed |
[91] D. G. Liakos, F. Neese, J. Phys. Chem. A 2012, 116, 4801.
| Crossref | GoogleScholarGoogle Scholar | 22489633PubMed |
[92] P. Jurečka, P. Hobza, Chem. Phys. Lett. 2002, 365, 89.
| Crossref | GoogleScholarGoogle Scholar |
[93] W. Klopper, H. P. Luthi, Mol. Phys. 1999, 96, 559.
| Crossref | GoogleScholarGoogle Scholar |
[94] J. Friedrich, J. Chem. Theory Comput. 2015, 11, 3596.
| Crossref | GoogleScholarGoogle Scholar | 26574443PubMed |
[95] L.-J. Yu, W. Wan, A. Karton, Chem. Phys. 2016, 480, 23.
| Crossref | GoogleScholarGoogle Scholar |