Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Preparation of Iron-Manganese Oxide@Diatomite Composite for Effective Removal of Vanadium from Wastewater

Junying Song A , Zhanbin Huang A B and Fengzhi Yang A
+ Author Affiliations
- Author Affiliations

A School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

B Corresponding author. Email: zbhuang2003@163.com

Australian Journal of Chemistry 72(9) 717-728 https://doi.org/10.1071/CH19164
Submitted: 10 April 2019  Accepted: 17 July 2019   Published: 13 August 2019

Abstract

Excess pentavalent vanadium(v) has severely degraded water quality and posed a huge threat to human health over the past several decades. Hence, it’s urgent and significant to explore a novel adsorbent which is low cost and efficient to treat vanadium pollution. In this work, a novel iron-manganese oxide@diatomite (MnFe2O4@DE) adsorbent with superior removal performance for simulated vanadium(v) wastewater was synthesised via a facile hydrothermal method. The as-prepared MnFe2O4@DE composite was characterised through different characterisation techniques. The results indicated that the MnFe2O4 nanoparticles were uniformly deposited on the surface of diatomite, resulting in a larger specific surface area and pore volume of the composite. In addition, the MnFe2O4@DE adsorbent exhibited the highest adsorption capacity for vanadium(v) (18.37 mg g−1 ± 0.5 %), which was up to around 13.24 and 1.33 times as much as that of pure diatomite and MnFe2O4, respectively. This is mainly attributed to the enhanced specific surface area and pore volume. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis demonstrated vanadium(v) could be reduced to low valence vanadium with low toxicity by the MnFe2O4@DE composite which could exist as VO2+ and VO+ cations in solution. The adsorption process was better fitted with a pseudo-second-order kinetic model and Langmuir model, which is spontaneous and endothermic. Overall, the novel MnFe2O4@DE composite could be applied as a promising adsorbent in addressing vanadium pollution issues due to its properties of low cost, effectiveness, and environmental friendliness.


References

[1]  W. Wisawapipat, R. Kretzschmar, Environ. Sci. Technol. 2017, 51, 8254.
         | Crossref | GoogleScholarGoogle Scholar | 28657305PubMed |

[2]  B. K. Hope, Biogeochemistry 1997, 37, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. K. Ghosh, R. Saha, B. Saha, Res. Chem. Intermed. 2015, 41, 4873.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. E. Yayayürük, O. Yayayürük, J. Chem. Technol. Biotechnol. 2017, 92, 1891.

[4]  A. E. Yayayürük, T. Shahwan, A. E. Eroğlu, Water Environ. Res. 2018, 90, 2056.
         | 30538014PubMed |

[5]  T. Leiviskä, M. K. Khalid, A. Sarpola, J. Tanskanen, J. Environ. Manage. 2017, 190, 231.
         | Crossref | GoogleScholarGoogle Scholar | 28056356PubMed |

[6]  I. Polowczyk, P. Cyganowski, B. F. Urbano, B. L. Rivas, M. Bryjak, N. Kabay, Hydrometallurgy 2017, 169, 496.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. García, J. C. González, M. I. Frascaroli, S. García, P. Blanes, I. Correia, J. C. Pessoa, L. F. Sala, Can. J. Chem. 2013, 91, 186.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, Y. Liu, Colloids Surf. A Physicochem. Eng. Asp. 2014, 446, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) B. H. D. Son, V. Q. Mai, D. X. Du, N. H. Phong, N. D. Cuong, D. Q. Khieu, J. Porous Mater. 2017, 24, 601.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. Chang, J. Qu, H. Liu, R. Liu, X. Zhao, J. Colloid Interface Sci. 2009, 338, 353.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Du, X. Wang, J. Wu, J. Wang, L. Yang, H. Dai, Microporous Mesoporous Mater. 2018, 271, 83.

[11]  Y. Al-Degs, M. A. M. Khraisheh, M. F. Tutunji, Water Res. 2001, 35, 3724.
         | Crossref | GoogleScholarGoogle Scholar | 11561635PubMed |

[12]  (a) Y. Du, H. Fan, L. Wang, J. Wang, J. Wu, H. Dai, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 7729.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Du, L. Wang, J. Wang, G. Zheng, J. Wu, H. Dai, J. Environ. Sci. (China) 2015, 29, 71.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Wang, H. Wu, L. Yu, R. Xu, T.‐T. Lim, X. W. D. Lou, Adv. Mater. 2012, 24, 1111.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) N. Li, F. Fu, J. Lu, Z. Ding, B. Tang, J. Pang, Environ. Pollut. 2017, 220, 1376.
         | Crossref | GoogleScholarGoogle Scholar | 27836472PubMed |
      (b) H. Eslami, M. H. Ehrampoush, A. Esmaeili, M. H. Salmani, A. A. Ebrahimi, M. T. Ghaneian, H. Falahzadeh, R. F. Fard, J. Clean. Prod. 2019, 208, 384.

[14]  X. Hu, Z. Ding, A. R. Zimmerman, S. Wang, B. Gao, Water Res. 2015, 68, 206.
         | Crossref | GoogleScholarGoogle Scholar | 25462729PubMed |

[15]  S. Kumar, R. R. Nair, P. B. Pillai, S. N. Gupta, M. A. Iyengar, A. K. Sood, ACS Appl. Mater. Interfaces 2014, 6, 17426.
         | Crossref | GoogleScholarGoogle Scholar | 25222124PubMed |

[16]  J. Bao, Y. Zhu, S. Yuan, F. Wang, H. Tang, Z. Bao, H. Zhou, Y. Chen, Nanoscale Res. Lett. 2018, 13, 396.
         | 30519822PubMed |

[17]  X. Bao, Z. Qiang, W. Ling, J. H. Chang, Separ. Purif. Tech. 2013, 117, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) D. S. Mathew, R. S. Juang, Chem. Eng. J. 2007, 129, 51.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) O. Hakami, Y. Zhang, C. J. Banks, Water Res. 2012, 46, 3913.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Pereira, A. M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M. P. Fernández-García, A. Guedes, P. B. Tavares, J.-M. Grenèche, J. P. Araújo, C. Freire, Chem. Mater. 2012, 24, 1496.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) M. G. Naseri, E. B. Saion, H. A. Ahangar, M. Hashim, A. H. Shaari, J. Magn. Magn. Mater. 2011, 323, 1745.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. H. Hosseini, A. Asadnia, Int. J. Phys. Sci. 2013, 8, 1209.

[21]  (a) S. Mohapatra, S. Sahu, S. Nayak, S. K. Ghosh, Langmuir 2015, 31, 8111.
         | Crossref | GoogleScholarGoogle Scholar | 26114840PubMed |
      (b) H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu, G. H. Li, Chem. Mater. 2012, 24, 4572.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. Zhang, D. Cai, W. Min, C. Zhang, Z. Jing, Z. Wu, Microporous Mesoporous Mater. 2013, 165, 106.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  X. Hu, Z. Sun, J. Song, G. Zhang, S. Zheng, Adv. Powder Technol. 2018, 29, 1644.

[24]  (a) X. Lin, X. Guo, W. Shi, F. Guo, H. Zhai, Y. Yan, Q. Wang, Catal. Commun. 2015, 66, 67.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Appl. Catal., B 2007, 69, 138.

[25]  Z. Wu, H. Joo, I. S. Ahn, S. Haam, J. H. Kim, K. Lee, Chem. Eng. J. 2004, 102, 277.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Li, J. Zhan, L. Huang, H. Xu, H. Li, R. Zhang, S. Wu, RSC Adv. 2014, 4, 11831.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  X. Tan, B. Gao, X. Xu, Y. Wang, J. Ling, Q. Yue, Q. Li, Chem. Eng. J. 2012, 211–212, 37.

[28]  A. Naeem, P. Westerhoff, S. Mustafa, Water Res. 2007, 41, 1596.
         | Crossref | GoogleScholarGoogle Scholar | 17303211PubMed |

[29]  (a) X. P. Liao, T. Wei, R. Q. Zhou, S. Bi, Adsorption 2008, 14, 55.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Q. He, S. Si, J. Zhao, H. Yan, B. Sun, Q. Cai, Y. Yu, Saudi J. Biol. Sci. 2018, 25, 1664.

[30]  H. Zhu, X. Xiao, Z. Guo, X. Han, Y. Liang, Y. Zhang, C. Zhou, Appl. Clay Sci. 2018, 161, 310.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D.-M. Guo, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, D.-J. Yang, Carbohydr. Polym. 2018, 202, 306.
         | 30287005PubMed |

[32]  N. T. Thanh Tu, T. V. Thien, P. D. Du, V. T. Thanh Chau, T. X. Mau, D. Q. Khieu, J. Environ. Chem. Eng. 2018, 6, 2269.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long, L. Ling, J. Colloid Interface Sci. 2016, 462, 200.
         | Crossref | GoogleScholarGoogle Scholar | 26454379PubMed |

[34]  (a) Y. Du, G. Zheng, J. Wang, L. Wang, J. Wu, H. Dai, Microporous Mesoporous Mater. 2014, 200, 27.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Tian, J. Zhang, H. Shi, N. Li, Q. Ping, J. Dispers. Sci. Technol. 2016, 37, 1059.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Anandkumar, B. Mandal, J. Hazard. Mater. 2011, 186, 1088.
         | Crossref | GoogleScholarGoogle Scholar | 21168268PubMed |

[36]  S. Zaidi, V. Sivasankar, T. Chaabane, V. Alonzo, K. Omine, R. Maachi, A. Darchen, M. Prabhakaran, J. Environ. Chem. Eng. 2019, 7, 102876.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. Bello, T. Leiviskä, R. Zhang, J. Tanskanen, P. Maziarz, J. Matusik, A. Bhatnagar, J. Hazard. Mater. 2019, 374, 372.
         | Crossref | GoogleScholarGoogle Scholar | 31028916PubMed |

[38]  R. Zhang, T. Leiviskä, J. Tanskanen, B. Gao, Q. Yue, Chem. Eng. J. 2019, 361, 680.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  J. Duan, S. Bao, Y. Zhang, Chem. Eng. Res. Des. 2018, 132, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  N. H. Mthombeni, S. Mbakop, A. Ochieng, M. S. Onyango, J. Taiwan Inst. Chem. Eng. 2016, 66, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  Q. Hu, H. Paudyal, J. Zhao, F. Huo, K. Inoue, H. Liu, Chem. Eng. J. 2014, 248, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  (a) E. Hryha, E. Rutqvist, L. Nyborg, Surf. Interface Anal. 2012, 44, 1022.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Mendialdua, R. Casanova, Y. Barbaux, J. Electron Spectrosc. Relat. Phenom. 1995, 71, 249.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Gracia, F. Yubero, J. Espinos, A. Gonzalezelipe, Appl. Surf. Sci. 2005, 252, 189.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  G. Wang, J. Zhang, J. Zhang, J. Chen, S. Zhu, X. Liu, R. Wang, J. Electroanal. Chem. (Lausanne) 2016, 768, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  I. Kotutha, E. Swatsitang, W. Meewassana, S. Maensiri, Jpn. J. Appl. Phys. 2015, 54, 06FH10.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  (a) Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, J. Hazard. Mater. 2014, 270, 61.
         | Crossref | GoogleScholarGoogle Scholar | 24548886PubMed |
      (b) Y. Ren, L. Lin, J. Ma, Y. Jing, F. Jing, Z. Fan, Appl. Catal. B 2015, 165, 572.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc. 2013, 134, 19572.

[47]  J. Hu, I. M. C. Lo, G. Chen, Separ. Purif. Tech. 2007, 56, 249.
         | Crossref | GoogleScholarGoogle Scholar |