Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide*
Hadi Ranji-Burachaloo A B , Qiang Fu A , Paul A. Gurr A , Dave E. Dunstan B C and Greg G. Qiao A CA Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Complex Fluids Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.
C Corresponding authors. Email: davided@unimelb.edu.au; gregghq@unimelb.edu.au
Australian Journal of Chemistry 71(10) 826-836 https://doi.org/10.1071/CH18281
Submitted: 7 June 2018 Accepted: 18 August 2018 Published: 19 September 2018
Abstract
Fenton cancer therapy as a new methodology for the treatment of tumour cells is largely restricted owing to the low stability, high aggregation, and poor selectivity of reported nanoparticles. In this study, an improved approach for the selective destruction of cancer cells is reported. Metal–organic framework (MOF) nanoparticles were synthesized and reduced via a hydrothermal method, and then PEGylated through the surface-initiated atom transfer radical polymerization (SI-ATRP) reaction to produce a PEGylated reduced MOF (P@rMOF). The ratio of PEG to nanoparticles was used to optimize the size and aggregation of the nanoparticles, with 2P@rMOF (2 : 1 mass ratio) having the smallest hydrodynamic diameter. The nanoparticles were further conjugated with folic acid for cell targeting. In vitro cell uptake experiments demonstrated that the internalization of 2P@rMOF-FA nanoparticles into cancer cells (HeLa) was almost 3-fold that of normal cells (NIH-3T3). In the presence of 2P@rMOF-FA, the HeLa cell viability decreased dramatically to 22 %, whereas the NIH-3T3 cell viability remained higher than 80 % after 24 h incubation. The selectivity index for 2P@rMOF-FA is 4.48, which is significantly higher than those reported in the literature for similar strategies. This work thus demonstrates the most stable and selective nanoparticle system for the treatment of cancer cells using the cell’s own H2O2.
References
[1] M. E. Davis, D. M. Shin, Nat. Rev. Drug Discov. 2008, 7, 771.| Crossref | GoogleScholarGoogle Scholar |
[2] I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 2002, 54, 631.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, G. Zhu, J. Am. Chem. Soc. 2011, 133, 8778.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Zan, J. Li, S. Luo, Z. Ge, Chem. Commun. 2014, 7824.
| Crossref | GoogleScholarGoogle Scholar |
[5] S. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev. 2015, 115, 1990.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. S. Thakor, S. S. Gambhir, CA Cancer J. Clin. 2013, 63, 395.
| Crossref | GoogleScholarGoogle Scholar |
[7] G.-Y. Liou, P. Storz, Free Radic. Res. 2010, 44, 479.
| Crossref | GoogleScholarGoogle Scholar |
[8] B. Kumar, S. Koul, L. Khandrika, R. B. Meacham, H. K. Koul, Cancer Res. 2008, 68, 1777.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Wang, F. Peng, J. Li, Y. Qiao, Q. Li, X. Liu, Mater. Today 2017, 20, 238.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Cadet, T. Douki, J.-L. Ravanat, Free Radic. Biol. Med. 2010, 49, 9.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. L. Circu, T. Y. Aw, Free Radic. Biol. Med. 2010, 48, 749.
| Crossref | GoogleScholarGoogle Scholar |
[12] Q. An, C. Sun, D. Li, K. Xu, J. Guo, C. Wang, ACS Appl. Mater. Interfaces 2013, 5, 13248.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Fu, Y. Shao, L. Wang, Y. Zhu, Nanoscale 2015, 7, 7275.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E. A. Bey, D. A. Boothman, J. Gao, Theranostics 2013, 3, 116.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. A. Ma, H. Xiao, C. Yu, J. Liu, Z. Cheng, H. Song, X. Zhang, C. Li, J. Wang, Z. Gu, Nano Lett. 2017, 17, 928.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Peng, Z. Wang, W. Liu, H. Zhang, W. Zuo, H. Tang, F. Chen, B. Wang, Dalton Trans. 2015, 12871.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Angew. Chem. Int. Ed. 2016, 55, 2101.
| Crossref | GoogleScholarGoogle Scholar |
[18] B. Kwon, E. Han, W. Yang, W. Cho, W. Yoo, J. Hwang, B.-M. Kwon, D. Lee, ACS Appl. Mater. Interfaces 2016, 8, 5887.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Xu, Z. Yuan, N. Kohler, J. Kim, M. A. Chung, S. Sun, J. Am. Chem. Soc. 2009, 131, 15346.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Wang, L. Yue, Z. Hu, Z. Dai, Y. Qi, X. Zheng, Z. Li, D. Yu, RSC Adv. 2016, 6, 107331.
| Crossref | GoogleScholarGoogle Scholar |
[21] L. Yue, J. Wang, Z. Dai, Z. Hu, X. Chen, Y. Qi, X. Zheng, D. Yu, Bioconjug. Chem. 2017, 28, 400.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. Ranji-Burachaloo, F. Karimi, K. Xie, Q. Fu, P. A. Gurr, D. E. Dunstan, G. G. Qiao, ACS Appl. Mater. Interfaces 2017, 9, 33599.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. C. R. Grayson, J. Ma, D. Putnam, Mol. Pharm. 2006, 3, 601.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Machacek, A. Cidlina, V. Novakova, J. Svec, E. Rudolf, M. Miletin, R. Kučera, T. Simunek, P. Zimcik, J. Med. Chem. 2015, 58, 1736.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. J. Shirbin, K. Ladewig, Q. Fu, M. Klimak, X. Zhang, W. Duan, G. G. Qiao, Biomacromolecules 2015, 16, 2463.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Wang, D. Chen, B. Li, J. He, D. Duan, D. Shao, M. Nie, Sci. Rep. 2016, 6, 26126.
[27] X. Fan, L. Lin, J. L. Dalsin, P. B. Messersmith, J. Am. Chem. Soc. 2005, 127, 15843.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. M. Kang, I. S. Choi, K.-B. Lee, Y. Kim, Macromol. Res. 2009, 17, 259.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. P. Majewski, A. Schallon, V. Jérôme, R. Freitag, A. H. Müller, H. Schmalz, Biomacromolecules 2012, 13, 857.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Y. Cho, S. E. Averick, E. Paredes, K. Wegner, A. Averick, S. Jurga, S. R. Das, K. Matyjaszewski, Biomacromolecules 2013, 14, 1262.
| Crossref | GoogleScholarGoogle Scholar |
[31] F. Hu, K. G. Neoh, L. Cen, E.-T. Kang, Biomacromolecules 2006, 7, 809.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. S. Kim, Y. J. Son, W. Mao, K. W. Leong, H. S. Yoo, Nano Lett. 2018, 18, 314.
| Crossref | GoogleScholarGoogle Scholar |
[33] K. Xie, Q. Fu, Y. He, J. Kim, S. Goh, E. Nam, G. Qiao, P. Webley, Chem. Commun. 2015, 15566.
| Crossref | GoogleScholarGoogle Scholar |
[34] E. H. H. Wong, M. P. van Koeverden, E. Nam, S. N. Guntari, S. H. Wibowo, A. Blencowe, F. Caruso, G. G. Qiao, Macromolecules 2013, 46, 7789.
| Crossref | GoogleScholarGoogle Scholar |
[35] M.-H. Pham, G.-T. Vuong, A.-T. Vu, T.-O. Do, Langmuir 2011, 27, 15261.
| Crossref | GoogleScholarGoogle Scholar |
[36] Q. Fu, K. Xie, S. Tan, J. Ren, Q. Zhao, P. Webley, G. Qiao, Chem. Commun. 2016, 12226.
| Crossref | GoogleScholarGoogle Scholar |
[37] K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
| Crossref | GoogleScholarGoogle Scholar |
[38] Y. Zhu, H. S. Sundaram, S. Liu, L. Zhang, X. Xu, Q. Yu, J. Xu, S. Jiang, Biomacromolecules 2014, 15, 1845.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. M. Ren, K. Satoh, T. K. Goh, A. Blencowe, K. Nagai, K. Ishitake, A. J. Christofferson, G. Yiapanis, I. Yarovsky, M. Kamigaito, Angew. Chem. Int. Ed. 2014, 53, 459.
| Crossref | GoogleScholarGoogle Scholar |
[40] L. Jiang, Z.-m. Gao, L. Ye, A.-y. Zhang, Z.-g. Feng, Polymer 2013, 54, 5188.
| Crossref | GoogleScholarGoogle Scholar |
[41] X. Shen, Z. Ge, Y. Pang, J. Solid State Chem. 2015, 222, 37.
| Crossref | GoogleScholarGoogle Scholar |
[42] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, Nat. Nanotechnol. 2007, 2, 577.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Her, L. Cui, R. G. Bristow, C. Allen, Radiat. Res. 2016, 185, 549.
| Crossref | GoogleScholarGoogle Scholar |
[44] X. Xie, J. Liao, X. Shao, Q. Li, Y. Lin, Sci. Rep. 2017, 7, 3827.
[45] L. Zhang, L. Laug, W. Munchgesang, E. Pippel, U. Gösele, M. Brandsch, M. Knez, Nano Lett. 2010, 10, 219.
| Crossref | GoogleScholarGoogle Scholar |
[46] L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu, J. Ye, Adv. Sci. 2015, 2, 1500006.
[47] P. Singh, K. Shiva, H. Celio, J. B. Goodenough, Energy Environ. Sci. 2015, 8, 3000.
| Crossref | GoogleScholarGoogle Scholar |
[48] S. Guo, Y. Huang, Q. Jiang, Y. Sun, L. Deng, Z. Liang, Q. Du, J. Xing, Y. Zhao, P. C. Wang, ACS Nano 2010, 4, 5505.
| Crossref | GoogleScholarGoogle Scholar |
[49] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. – Eur. J. 2011, 17, 6643.
| Crossref | GoogleScholarGoogle Scholar |
[50] Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.
| Crossref | GoogleScholarGoogle Scholar |
[51] A. F. Trindade, R. F. Frade, E. M. Maçôas, C. Graça, C. A. Rodrigues, J. M. Martinho, C. A. Afonso, Org. Biomol. Chem. 2014, 12, 3181.
| Crossref | GoogleScholarGoogle Scholar |
[52] L. Jiang, Z.-m. Gao, L. Ye, A.-y. Zhang, Z.-g. Feng, Polymer 2013, 54, 5188.
| Crossref | GoogleScholarGoogle Scholar |
[53] S.-W. Kuo, J.-L. Hong, Y.-C. Huang, J.-K. Chen, S.-K. Fan, F.-H. Ko, C.-W. Chu, F.-C. Chang, J. Nanomater. 2012, 2012, 7.
[54] A. H. Thomas, G. Suárez, F. M. Cabrerizo, R. Martino, A. L. Capparelli, J. Photochem. Photobiol. Chem. 2000, 135, 147.
| Crossref | GoogleScholarGoogle Scholar |
[55] Z. Chen, J.-J. Yin, Y.-T. Zhou, Y. Zhang, L. Song, M. Song, S. Hu, N. Gu, ACS Nano 2012, 6, 4001.
| Crossref | GoogleScholarGoogle Scholar |
[56] W. B. Liechty, N. A. Peppas, Eur. J. Pharm. Biopharm. 2012, 80, 241.
| Crossref | GoogleScholarGoogle Scholar |
[57] S. D. Steichen, M. Caldorera-Moore, N. A. Peppas, Eur. J. Pharm. Sci. 2013, 48, 416.
| Crossref | GoogleScholarGoogle Scholar |
[58] J. A. Magee, E. Piskounova, S. J. Morrison, Cancer Cell 2012, 21, 283.
| Crossref | GoogleScholarGoogle Scholar |
[59] S. C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B. B. Aggarwal, Antioxid. Redox Signal. 2012, 16, 1295.
| Crossref | GoogleScholarGoogle Scholar |
[60] S. Li, K. Chang, K. Sun, Y. Tang, N. Cui, Y. Wang, W. Qin, H. Xu, C. Wu, ACS Appl. Mater. Interfaces 2016, 8, 3624.
| Crossref | GoogleScholarGoogle Scholar |
[61] P. A. Cerutti, Lancet 1994, 344, 862.
| Crossref | GoogleScholarGoogle Scholar |
[62] S. Bian, X. Sun, A. Bai, C. Zhang, L. Li, K. Enjyoji, W. G. Junger, S. C. Robson, Y. Wu, PLoS One 2013, 8, e60184.
| Crossref | GoogleScholarGoogle Scholar |
[63] M. Danihelová, M. Veverka, E. Šturdík, S. Jantová, Interdiscip. Toxicol. 2013, 6, 209.
| Crossref | GoogleScholarGoogle Scholar |
[64] W. A. G. W. N. Hafiza, S. Y. Latifah, OncoTargets Ther. 2014, 7, 1375.
[65] Y. Huang, T. Yang, W. Zhang, Y. Lu, P. Ye, G. Yang, B. Li, S. Qi, Y. Liu, X. He, Int. J. Nanomedicine 2014, 9, 4581.
[66] K. Tomankova, K. Polakova, K. Pizova, S. Binder, M. Havrdova, M. Kolarova, E. Kriegova, J. Zapletalova, L. Malina, J. Horakova, Int. J. Nanomedicine 2015, 10, 949.
| Crossref | GoogleScholarGoogle Scholar |
[67] S. K. Maji, A. K. Mandal, K. T. Nguyen, P. Borah, Y. Zhao, ACS Appl. Mater. Interfaces 2015, 7, 9807.
| Crossref | GoogleScholarGoogle Scholar |