Siliquapyranone: A Tannic Acid Tetrahydropyran-2-one Isolated from the Leaves of Carob (Ceratonia siliqua) by Pressurised Hot Water Extraction*
Bianca J. Deans A , Brianna E. Skierka A , Benjamin W. Karagiannakis A , Daniel Vuong B , Ernest Lacey B , Jason A. Smith A C and Alex C. Bissember A CA School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.
B Microbial Screening Technologies, Building C, 28-54 Percival Road, Smithfield, NSW 2164, Australia.
C Corresponding authors. Email: jason.smith@utas.edu.au; alex.bissember@utas.edu.au
Australian Journal of Chemistry 71(9) 702-707 https://doi.org/10.1071/CH18265
Submitted: 1 June 2018 Accepted: 2 July 2018 Published: 26 July 2018
Abstract
Studies of the phytochemistry of carob (Ceratonia siliqua) leaf material are extremely limited. This report features the second natural product isolation study of carob leaves and the first such investigation of C. siliqua grown in Australia. Investigation of leaf material from seven carob cultivars using pressurised hot water extraction (PHWE) revealed the presence of high levels of myricitrin, d-pinitol, and sucrose in addition to the previously unreported natural product siliquapyranone {(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-(((2S,4S)-2-methyl-6-oxotetrahydro-2H-pyran-4-yl)oxy)tetrahydro-2H-pyran-3,4-diyl bis(3,4,5-trihydroxybenzoate)}. Siliquapyranone represents a biosynthetic fusion of conventional 2,3-gallate esters on a β-glucose tannin with a hydroxytetrahydro-2H-pyran-2-one-related non-tannin tetrahydropyran-2-one, parasorboside. Preliminary biological testing indicates that siliquapyranone exhibits weak activity against both tumour and normal cell lines. This suggests that, like most tannins and parasorboside, siliquapyranone may act as an antifeedant.
References
[1] I. Batlle, J. Tous, Carob Tree. Ceratonia siliqua L. Promoting the Conservation and Use of Underutilized and Neglected Crops 1997 (International Plant Genetic Resources Institute: Rome, Italy).[2] D. P. Makris, P. Kefalas, Food Technol. Biotechnol. 2004, 42, 105.
[3] H. Şahin, A. Topuz, M. Pischetsrieder, F. Özdemir, Eur. Food Res. Technol. 2009, 230, 155.
| Crossref | GoogleScholarGoogle Scholar |
[4] N. Tetik, I. Turhan, H. R. Oziyci, M. Karhan, Int. J. Food Sci. Nutr. 2011, 62, 572.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. L. Merwin, The Culture of Carob (Ceratonia siliqua) for Food, Fodder and Fuel in Semi-Arid Environments 1981 (International Tree Crops Institute USA Inc.: Davis, CA).
[6] N. Winer, Int. Tree Crops J. 1980, 1, 15.
| Crossref | GoogleScholarGoogle Scholar |
[7] I. Turhan, N. Tetik, M. Aksu, M. Karhan, M. Certel, J. Food Process Eng. 2006, 29, 498.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. El Hajaji, N. Lachkar, K. Alaoui, Y. Cherrah, A. Farah, A. Ennabili, B. El Bali, M. Lachkar, Rec. Nat. Prod. 2010, 4, 193.
[9] P. Würsch, S. Del Vedovo, J. Rosset, M. J. Smiley, Lebensm. Wiss. Technol. 1984, 17, 351.
[10] A. Cháfer, A. Berna, J. Supercrit. Fluids 2014, 94, 212.
| Crossref | GoogleScholarGoogle Scholar |
[11] N. Tetik, E. Yuksel, Ultrason. Sonochem. 2014, 21, 860.
| Crossref | GoogleScholarGoogle Scholar |
[12] I. Turhan, Int. J. Food Prop. 2014, 17, 363.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. A. Dakia, B. Wathelet, M. Paquot, Food Chem. 2007, 102, 1368.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. Christou, A. Agapiou, R. Kokkinofta, J. Adv. Res. 2018, 10, 1.
| Crossref | GoogleScholarGoogle Scholar |
[15] R. Avallone, M. Plessi, M. Baraldi, A. Monzani, J. Food Compos. Anal. 1997, 10, 166.
| Crossref | GoogleScholarGoogle Scholar |
[16] N. Silanikove, N. Gilboa, I. Nir, A. Perevolotsky, Z. Nitsan, J. Agric. Food Chem. 1996, 44, 199.
| Crossref | GoogleScholarGoogle Scholar |
[17] N. Silanikove, N. Gilboa, Z. Nitsan, Small Rumin. Res. 2001, 40, 95.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Corsi, R. Avallone, F. Cosenza, F. Farina, C. Baraldi, M. Baraldi, Fitoterapia 2002, 73, 674.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. Vaya, S. Mahmood, Biofactors 2006, 28, 169.
| Crossref | GoogleScholarGoogle Scholar |
[20] N. Aissani, V. Coroneo, S. Fattouch, P. Caboni, J. Agric. Food Chem. 2012, 60, 9954.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. D. Meinhart, F. M. Damin, L. Caldeirão, T. F. F. da Silviera, J. T. Filho, H. T. Godoy, Food Res. Int. 2017, 99, 522.
| Crossref | GoogleScholarGoogle Scholar |
[22] O. A. Eldashan, Curr. Res. J. Biol. Sci. 2011, 3, 52.
[23] (a) J. Just, B. J. Deans, W. J. Olivier, B. Paull, A. C. Bissember, J. A. Smith, Org. Lett. 2015, 17, 2428.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Just, T. B. Jordan, B. Paull, A. C. Bissember, J. A. Smith, Org. Biomol. Chem. 2015, 13, 11200.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Just, G. L. Bunton, B. J. Deans, N. L. Murray, A. C. Bissember, J. A. Smith, J. Chem. Educ. 2016, 93, 213.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. J. Deans, A. C. Bissember, J. A. Smith, Aust. J. Chem. 2016, 69, 1219.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. J. Deans, J. Just, J. Chhetri, L. K. Burt, J. N. Smith, N. L. Kilah, M. de Salas, N. Gueven, A. C. Bissember, J. A. Smith, ChemistrySelect 2017, 2, 2439.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. J. Deans, W. J. Olivier, D. Girbino, A. C. Bissember, J. A. Smith, Fitoterapia 2018, 126, 65.
| Crossref | GoogleScholarGoogle Scholar |
(g) B. J. Deans, N. L. Kilah, G. J. Jordan, A. C. Bissember, J. A. Smith, J. Nat. Prod. 2018, 81, 1241.
| Crossref | GoogleScholarGoogle Scholar |
(h) B. J. Deans, L. Tedone, A. C. Bissember, J. A. Smith, Phytochemistry 2018, 153, 74.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. M. David, F. G. Cruz, M. L. S. Guedes, J. P. Chavez, J. Braz. Chem. Soc. 1996, 7, 115.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. Sridhar, A. V. Krishnaraju, G. V. Subbaraju, Indian J. Pharm. Sci. 2006, 68, 111.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. De Bruyn, J. Van Loo, Carbohydr. Res. 1991, 211, 131.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Baumgartner, R. Gennerritzmann, J. Haas, R. Amado, H. Neukom, J. Agric. Food Chem. 1986, 34, 827.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. A. Ayaz, H. Torun, R. H. Glew, Z. D. Bak, L. T. Chuang, J. M. Presley, R. Andrews, Plant Foods Hum. Nutr. 2009, 64, 286.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. Y. Toyota, Y. Oiso, Y. Asakawa, Chem. Pharm. Bull. 2001, 49, 1567.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. Kamatham, N. Kumar, P. Gudipalli, Toxicol. Rep. 2015, 2, 520.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. I. Kim, J. C. Kim, H. J. Joo, S. H. Jung, J. J. Kim, Food Sci. Biotechnol. 2005, 14, 441.
[32] M. S. Buchanan, T. Hashimoto, S. Takaoka, Y. Kan, Y. Asakawa, Phytochemistry 1996, 42, 173.
| Crossref | GoogleScholarGoogle Scholar |
[33] V. Rukachaisirikul, U. Sommart, S. Phongpaichit, N. Hutadilok-Towatana, N. Rungjindamai, J. Sakayaroj, Chem. Pharm. Bull. 2007, 55, 1316.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Tschesche, H.-J. Hoppe, G. Snatzke, G. Wulfl, H.-W. Fehlhaher, Chem. Ber. 1971, 104, 1420.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Numata, C. Takahashi, R. Fujiki, E. Kitano, A. Kitajima, T. Takemura, Chem. Pharm. Bull. 1990, 38, 2862.
| Crossref | GoogleScholarGoogle Scholar |
[36] H. M. Chen, Y. C. Wu, Y. C. Chia, F. R. Chang, H. K. Hsu, Y. C. Hsieh, C. C. Chen, S. S. Yun, Cancer Lett. 2009, 286, 161.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Kaur, B. Velmurugan, S. Rajamanickam, R. Agarwal, C. Agarwal, Pharm. Res. 2009, 26, 2133.
| Crossref | GoogleScholarGoogle Scholar |
[38] R. D. Yeh, J. C. Chen, T. Y. Lai, J. S. Yang, C. S. Yu, J. H. Chiang, C. C. Lu, S. T. Yang, C. C. Yu, S. J. Chang, H. Y. Lin, J. G. Chung, Anticancer Res. 2011, 31, 2821.
[39] N. Latief, S. Anand, M. C. Lingaraju, N. N. Pathak, J. Kalra, D. Kumar, B. K. Bhadoria, S. K. Tandan, Phytother. Res. 2015, 29, 1798.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. H. Bates, R. B. Jones, C. J. Bailey, Br. J. Pharmacol. 2000, 130, 1944.
| Crossref | GoogleScholarGoogle Scholar |
[41] H. J. Lacey, D. Vuong, J. I. Pitt, E. Lacey, A. M. Piggott, Aust. J. Chem. 2016, 69, 152.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. Meziani, B. D. Oomah, F. Zaidi, A. Simon-Levert, C. Bertrand, R. Zaidi-Yahiaoui, Microb. Pathog. 2015, 78, 95.
| Crossref | GoogleScholarGoogle Scholar |
[43] F. Z. Ghanemi, M. Belarbi, A. Fluckiger, A. Nani, A. Dumont, C. de Rosny, I. Aboura, A. S. Khan, B. Murtaza, C. Benamar, B. F. Lahfa, D. Patoli, D. Delmas, C. Rébé, L. Apétoh, N. A. Khan, F. Gringhelli, M. Rialland, A. Hichami, J. Funct. Foods 2017, 33, 112.
| Crossref | GoogleScholarGoogle Scholar |
[44] K. Rtibi, S. Selmi, D. Grami, M. Amri, B. Eto, J. El-Benna, H. Sebai, L. Marzouki, Biomed. Pharmacother. 2017, 93, 522.
| Crossref | GoogleScholarGoogle Scholar |
[45] S. Uysal, G. Zengin, A. Aktumsek, S. Karatas, Int. J. Food Prop. 2015, 18, 2268.
| Crossref | GoogleScholarGoogle Scholar |
[46] R. Avallone, F. Cosenza, F. Farina, C. Baraldi, M. Baraldi, Fitoterapia 2002, 73, 390.
| Crossref | GoogleScholarGoogle Scholar |
[47] A. M. Awwad, N. M. Salem, A. O. Abdeen, Int. J. Ind. Chem. 2013, 4, 29.
| Crossref | GoogleScholarGoogle Scholar |
[48] S.-K. Chung, Y.-C. Kim, Y. Takaya, K. Terashima, M. Niwa, J. Agric. Food Chem. 2004, 52, 4664.
| Crossref | GoogleScholarGoogle Scholar |