Are Aminomethyl Thioesters Viable Intermediates in Native Chemical Ligation Type Amide Bond Forming Reactions?
Carlie L. Charron A , Jade M. Cottam Jones A and Craig A. Hutton A BA School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: chutton@unimelb.edu.au
Australian Journal of Chemistry 71(9) 697-701 https://doi.org/10.1071/CH18198
Submitted: 2 May 2018 Accepted: 28 June 2018 Published: 27 July 2018
Abstract
The condensation of N-mercaptomethyl amines and thioesters is a potential route to amides, via aminomethyl thioester intermediates, in a native chemical ligation type process followed by self-cleavage of the ‘mercaptomethyl’ auxiliary. This paper describes investigations towards the preparation of aminomethyl thioesters, and subsequent conversion into amides, from a three-component coupling of formaldehyde, a thioacid, and an amine. Our studies suggest that while such intermediates may be formed en route to amides, no advantages are offered over the direct reaction of the amine and thioacid precursors.
References
[1] M. M. Joullié, K. M. Lassen, Arkivoc 2010, 2010, 189.| Crossref | GoogleScholarGoogle Scholar |
[2] C. A. G. N. Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827.
| Crossref | GoogleScholarGoogle Scholar |
[3] E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606.
| Crossref | GoogleScholarGoogle Scholar |
[4] V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. M. de Figueiredo, J.-S. Suppo, J.-M. Campagne, Chem. Rev. 2016, 116, 12029.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. S. Kemp, Biopolymers 1981, 20, 1793.
| Crossref | GoogleScholarGoogle Scholar |
[7] D. S. Kemp, D. R. Buckler, Tetrahedron Lett. 1991, 32, 3013.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. Kent, Science 1994, 266, 776.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. P. R. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 2008, 47, 10030.
| Crossref | GoogleScholarGoogle Scholar |
[10] L. R. Malins, R. J. Payne, Curr. Opin. Chem. Biol. 2014, 22, 70.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. Thapa, R.-Y. Zhang, V. Menon, J.-P. Bingham, Molecules 2014, 19, 14461.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. Raibaut, N. Ollivier, O. Melnyk, Chem. Soc. Rev. 2012, 41, 7001.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. E. Dawson, S. B. Kent, Annu. Rev. Biochem. 2000, 69, 923.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. P. Hemantha, N. Narendra, V. V. Sureshbabu, Tetrahedron 2012, 68, 9491.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Rohde, O. Seitz, Biopolymers 2010, 94, 551.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Z. Yan, P. E. Dawson, J. Am. Chem. Soc. 2001, 123, 526.
| Crossref | GoogleScholarGoogle Scholar |
[17] B. Wu, J. Chen, J. D. Warren, G. Chen, Z. Hua, S. J. Danishefsky, Angew. Chem. Int. Ed. 2006, 45, 4116.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. R. Malins, N. J. Mitchell, S. McGowan, R. J. Payne, Angew. Chem. Int. Ed. Engl. 2015, 54, 12716.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. F. Loibl, Z. Harpaz, O. Seitz, Angew. Chem. Int. Ed. Engl. 2015, 54, 15055.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Offer, Biopolymers 2010, 94, 530.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Offer, P. E. Dawson, Org. Lett. 2000, 2, 23.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Offer, C. N. C. Boddy, P. E. Dawson, J. Am. Chem. Soc. 2002, 124, 4642.
| Crossref | GoogleScholarGoogle Scholar |
[23] Y.-A. Lu, J. P. Tam, Org. Lett. 2005, 7, 5003.
| Crossref | GoogleScholarGoogle Scholar |
[24] P. Botti, M. Carrasco, S. B. H. Kent, Int. J. Pept. Protein Res. 2001, 42, 1831.
[25] L. E. Canne, S. J. Bark, S. B. H. Kent, J. Am. Chem. Soc. 1996, 118, 5891.
| Crossref | GoogleScholarGoogle Scholar |
[26] W. Chen, J. Shao, M. Hu, W. Yu, M. A. Giulianotti, R. A. Houghten, Y. Yu, Chem. Sci. (Camb.) 2013, 4, 970.
| Crossref | GoogleScholarGoogle Scholar |
[27] N. Lysenko, Z. Org. Khim. 1974, 10, 2049.
[28] S. Searles, S. Nukina, E. R. Magnuson, J. Org. Chem. 1965, 30, 1920.
| Crossref | GoogleScholarGoogle Scholar |
[29] S. Scarles, S. Nukina, J. Am. Chem. Soc. 1965, 87, 5656.
| Crossref | GoogleScholarGoogle Scholar |
[30] E. E. Smissman, J. R. J. Sorenson, J. Org. Chem. 1965, 30, 300.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. Carroll, S. Boldon, R. Bejot, J. E. Moore, J. Declerck, V. Gouverneur, Org. Biomol. Chem. 2011, 9, 136.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. M. Mali, H. N. Gopi, J. Org. Chem. 2014, 79, 2377.
| Crossref | GoogleScholarGoogle Scholar |
[33] C. Madhu, T. Vishwanatha, V. Sureshbabu, Synthesis 2013, 45, 2727.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. M. Mali, S. V. Jadhav, H. N. Gopi, Chem. Commun. 2012, 48, 7085.
| Crossref | GoogleScholarGoogle Scholar |
[35] P. Wang, S. J. Danishefsky, J. Am. Chem. Soc. 2010, 132, 17045.
| Crossref | GoogleScholarGoogle Scholar |
[36] R. Liu, L. E. Orgel, Nature 1997, 389, 52.
| Crossref | GoogleScholarGoogle Scholar |
[37] Further investigations on the solvent dependence of the direct acylation of amines by thioacids will be reported in due course.