Visible Light-Induced CO-Release Reactivity of a Series of ZnII–Flavonolate Complexes
Yuanyuan Su A , Weixing Yang A , Xu Yang A , Ronglan Zhang A B and Jianshe Zhao AA College of Chemistry and Materials, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, Xi’an 710069, China.
B Corresponding author. Email: zhangrl@nwu.edu.cn
Australian Journal of Chemistry 71(8) 549-558 https://doi.org/10.1071/CH18192
Submitted: 29 April 2018 Accepted: 23 June 2018 Published: 26 July 2018
Abstract
A series of zinc–flavonolate complexes of the general formula [(L)Zn(R)]ClO4 (L = TPA (tris-2-(pyridylmethyl)amine)), 6-MeTPA (N,N-(6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine)), 6-Me2TPA (N,N-bis(6-methyl-2-pyridyl)methyl)(2-pyridylmethyl) amine), BPQA (bis(2-pyridylmethyl)(2-quinolinemethyl)amine), and BQPA (bis(2-quinolinemethyl)(2-pyridylmethyl)amine), R = FLH (flavonol), 4-MeOFLH (4-methoxyflavonol), and 4-MeOFLTH (4-methoxyflavothione)) have been prepared and characterised by X-ray crystallography, elemental analysis, FT-IR, ESI-MS, 1H NMR, 13C NMR, UV-vis and fluorescence spectroscopy. All the complexes can be induced to release CO by visible light (λmax ranges from 414 to 503 nm). The maximum absorption wavelength of the complexes followed the order 4-MeOFLTH > 4-MeOFLH > FLH. Exposure of the complexes to visible light under aerobic conditions results in oxidative C–C bond cleavage and almost quantitative CO release. Cytotoxicity tests showed that the complexes had a low toxicity to HeLa cells in the concentration range of 1 to 50 μM. These advantages indicate that the series of complexes are likely to be applied to biological systems.
References
[1] L. E. Otterbein, B. S. Zuckerbraun, M. Haga, F. Liu, R. Song, A. Usheva, C. Stachulak, N. Bodyak, R. N. Smith, E. Csizmadia, S. Tyagi, Y. Akamatsu, R. J. Flavell, T. R. Billiar, E. Tzeng, F. H. Bach, A. M. K. Choi, M. P. Soares, Nat. Med. 2003, 9, 183.| Crossref | GoogleScholarGoogle Scholar |
[2] M. L. Wu, Y. C. Ho, S. F. Yet, Antioxid. Redox Signal. 2011, 15, 1835.
| Crossref | GoogleScholarGoogle Scholar |
[3] H. Fujii, X. Zhang, T. Tomita, M. Ikeda-Saito, T. Yoshida, J. Am. Chem. Soc. 2001, 123, 6475.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. E. Pierri, A. Pallaoro, G. Wu, P. C. Ford, J. Am. Chem. Soc. 2012, 134, 18197.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. Chakraborty, S. J. Carrington, J. Hauser, S. R. J. Oliver, P. K. Mascharak, Chem. Mater. 2015, 27, 8387.
| Crossref | GoogleScholarGoogle Scholar |
[6] I. Chakraborty, S. J. Carrington, G. Roseman, P. K. Mascharak, Inorg. Chem. 2017, 56, 1534.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. D. Friis, R. H. Taaning, A. T. Lindhardt, T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 18114.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Bjerglund, A. T. Lindhardt, T. Skrydstrup, J. Org. Chem. 2012, 77, 3793.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. Palao, T. Slanina, L. Muchová, T. Šolomek, L. Vítek, P. Klán, J. Am. Chem. Soc. 2016, 138, 126.
| Crossref | GoogleScholarGoogle Scholar |
[10] P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119.
| Crossref | GoogleScholarGoogle Scholar |
[11] W. Q. Zhang, A. J. Atkin, R. J. Thatcher, Dalton Trans. 2009, 22, 4351.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. A. Gonzalez, N. L. Fry, R. Burt, Inorg. Chem. 2011, 50, 3127.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. Hewison, S. H. Crook, B. E. Mann, Organometallics 2012, 31, 5823.
| Crossref | GoogleScholarGoogle Scholar |
[14] I. Chakraborty, S. J. Carrington, P. K. Mascharak, Acc. Chem. Res. 2014, 47, 2603.
| Crossref | GoogleScholarGoogle Scholar |
[15] I. Chakraborty, J. Jimenez, W. M. C. Sameera, M. Kato, P. K. Mascharak, Inorg. Chem. 2017, 56, 2863.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. Grubel, B. J. Laughlin, T. R. Maltais, Chem. Commun. 2011, 47, 10431.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. Grubel, K. Rudzka, A. M. Arif, K. L. Klotz, J. A. Halfen, L. M. Berreau, Inorg. Chem. 2010, 49, 82.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. K. Garner, S. B. Fitch, L. H. McAlexander, L. M. Bezold, A. M. Arif, L. M. Berreau, J. Am. Chem. Soc. 2002, 124, 9970.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. N. Anderson, M. Noble, K. Grubel, J. Coord. Chem. 2014, 67, 4061.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. L. Tran, S. M. Cohen, Chem. Commun. 2006, 203, 203.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. J. Sun, Q. Q. Huang, J. J. Zhang, Inorg. Chem. 2014, 53, 2932.
| Crossref | GoogleScholarGoogle Scholar |
[22] K. Grubel, K. Rudzka, A. M. Arif, K. L. Klotz, J. A. Halfen, L. M. Berreau, Inorg. Chem. 2010, 49, 82.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. Zhang, J. Sun, P. Chen, Anal. Chem. 2015, 87, 9974.
| Crossref | GoogleScholarGoogle Scholar |
[24] I. Chakraborty, S. J. Carrington, P. K. Mascharak, Acc. Chem. Res. 2014, 47, 2603.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. N. Anderson, J. M. Richards, H. J. Esquer, A. D. Benninghoff, A. M. Arif, L. M. Berreau, ChemistryOpen 2015, 4, 590.
| Crossref | GoogleScholarGoogle Scholar |
[26] T. Soboleva, H. J. Esquer, A. D. Benninghoff, L. M. Berreau, J. Am. Chem. Soc. 2017, 139, 9435.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. E. Pierri, A. Pallaoro, G. Wu, J. Am. Chem. Soc. 2012, 134, 18197.
| Crossref | GoogleScholarGoogle Scholar |
[28] K. Grubel, A. R. Marts, S. M. Greer, Eur. J. Inorg. Chem. 2012, 2012, 4750.
| Crossref | GoogleScholarGoogle Scholar |
[29] W. Feng, D. Liu, Q. Zhai, G. Feng, Sens. Actuators B 2017, 240, 625.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. S. Massoud, R. S. Perkins, F. R. Louka, W. Xu, A. Le Roux, Q. Dutercq, R. C. Fischer, F. A. Mautner, M. Handa, Y. Hiraoka, G. L. Kreft, T. Bortolottoe, H. Terenzi, Dalton Trans. 2014, 43, 10086.
| Crossref | GoogleScholarGoogle Scholar |
[31] D. Sheet, P. Halder, T. K. Paine, Angew. Chem. 2013, 52, 13314.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. Bersani, S. Salmaso, F. Mastrotto, E. Ravazzolo, A. Semenzato, P. Caliceti, Bioconjug. Chem. 2012, 23, 1415.
| Crossref | GoogleScholarGoogle Scholar |
[33] D. Rojas, A. M. García, A. Vega, Y. Moreno, D. Venegas-Yazigi, M. T. Garland, J. Manzur, Inorg. Chem. 2004, 43, 6324.
| Crossref | GoogleScholarGoogle Scholar |
[34] D. Maiti, A. A. Narducci Sarjeant, S. Itoh, K. D. Karlin, J. Am. Chem. Soc. 2008, 130, 5644.
| Crossref | GoogleScholarGoogle Scholar |
[35] Y. Gultneh, T. B. Yisgedu, Y. T. Tesema, R. J. Butcher, Inorg. Chem. 2003, 42, 1857.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. L. Ward, L. Elbaz, J. B. Kerr, J. Arnold, Inorg. Chem. 2012, 51, 4694.
| Crossref | GoogleScholarGoogle Scholar |