Cyanosilylation of Aldehydes Catalyzed by Iron(iii) Arylhydrazone-β-Diketone Complexes
Atash V. Gurbanov A B H , Abel M. Maharramov B , Fedor I. Zubkov C , Alexander M. Saifutdinov D E and Firudin I. Guseinov F GA Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenue Rovisco Pais, 1049–001 Lisbon, Portugal.
B Organic Chemistry Department, Baku State University, Z. Xalilov Street 23, Az 1148 Baku, Azerbaijan.
C Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russian Federation.
D Kazan National Research Technological University, Karl Marx Street 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
E Institute for Chemistry and Biology, Immanuel Kant Baltic Federal University, Universitetskaya Street, 236000 Kaliningrad, Russian Federation.
F National University of Science and Technology (MISIS), Moscow Leninsky Prospect 4, 119049 Moscow, Russian Federation.
G Zelinskiy Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation.
H Corresponding author. Email: organik10@hotmail.com
Australian Journal of Chemistry 71(3) 190-194 https://doi.org/10.1071/CH17595
Submitted: 19 November 2017 Accepted: 1 February 2018 Published: 20 February 2018
Abstract
Two known iron(iii) complexes, [Fe(H2O)3(L1)]·xH2O (x = 4 (1), 5 (2)) and [Fe(H2O)3(L2)]·3H2O (3), bearing the basic forms of 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxybenzenesulfonic acid (H3L1) and 3-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)-2-hydroxy-5-nitrobenzenesulfonic acid (H3L2), were prepared and used as homogeneous catalysts for cyanosilylation of a variety of aldehydes with trimethylsilyl cyanide leading to the corresponding cyanohydrin trimethylsilyl ethers. High yield (up to 98 %) was observed in the reaction catalyzed by 3 at room temperature in methanol.
References
[1] (a) M. N. Kopylovich, K. T. Mahmudov, A. Mizar, A. J. L. Pombeiro, Chem. Commun. 2011, 7248.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCmsLc%3D&md5=55c5c8b52858bbc8f8def48b139c5555CAS |
(b) K. T. Mahmudov, M. N. Kopylovich, A. J. L. Pombeiro, Coord. Chem. Rev. 2013, 257, 1244.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. T. Mahmudov, A. J. L. Pombeiro, Chem. – Eur. J. 2016, 22, 16356.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. N. Kopylovich, K. T. Mahmudov, M. F. C. Guedes da Silva, L. M. D. R. S. Martins, M. L. Kuznetsov, T. F. S. Silva, J. J. R. F. Silva, A. J. L. Pombeiro, J. Phys. Org. Chem. 2011, 24, 764.
[2] (a) K. T. Mahmudov, M. N. Kopylovich, A. M. Maharramov, M. M. Kurbanova, A. V. Gurbanov, A. J. L. Pombeiro, Coord. Chem. Rev. 2014, 265, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVektr4%3D&md5=c87219791d190bc6ee48f1d46d28b3b1CAS |
(b) T. C. O. Mac Leod, M. N. Kopylovich, M. F. C. Guedes da Silva, K. T. Mahmudov, A. J. L. Pombeiro, Appl. Catal. A 2012, 439–440, 15.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. N. Kopylovich, Y. Y. Karabach, K. T. Mahmudov, M. Haukka, A. M. Kirillov, P. J. Figiel, A. J. L. Pombeiro, Cryst. Growth Des. 2011, 11, 4247.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Mizar, M. F. C. Guedes da Silva, M. N. Kopylovich, S. Mukherjee, K. T. Mahmudov, A. J. L. Pombeiro, Eur. J. Inorg. Chem. 2012, 2305.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Jlassi, A. P. C. Ribeiro, M. F. C. Guedes da Silva, K. T. Mahmudov, M. N. Kopylovich, T. B. Anisimova, H. Naïli, G. A. O. Tiago, A. J. L. Pombeiro, Eur. J. Inorg. Chem. 2014, 4541.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. T. Mahmudov, M. N. Kopylovich, A. Sabbatini, M. G. B. Drew, L. M. D. R. S. Martins, C. Pettinari, A. J. L. Pombeiro, Inorg. Chem. 2014, 53, 9946.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Palmucci, K. T. Mahmudov, M. F. C. Guedes da Silva, L. M. D. R. S. Martins, F. Marchetti, C. Pettinari, A. J. L. Pombeiro, RSC Adv. 2015, 5, 84142.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. T. Mahmudov, M. F. C. Guedes da Silva, M. Sutradhar, M. N. Kopylovich, F. E. Huseynov, N. T. Shamilov, A. A. Voronina, T. M. Buslaeva, A. J. L. Pombeiro, Dalton Trans. 2015, 5602.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. N. Kopylovich, K. T. Mahmudov, M. Haukka, K. V. Luzyanin, A. J. L. Pombeiro, Inorg. Chim. Acta 2011, 374, 175.
| Crossref | GoogleScholarGoogle Scholar |
(j) K. T. Mahmudov, A. M. Maharramov, R. A. Aliyeva, I. A. Aliyev, R. K. Askerov, R. Batmaz, M. N. Kopylovich, A. J. L. Pombeiro, J. Photochem. Photobiol. Chem. 2011, 219, 159.
| Crossref | GoogleScholarGoogle Scholar |
(k) A. Sabbatini, L. M. D. R. S. Martins, K. T. Mahmudov, M. N. Kopylovich, M. G. B. Drew, C. Pettinari, A. J. L. Pombeiro, Catal. Commun. 2014, 48, 69.
| Crossref | GoogleScholarGoogle Scholar |
(l) N. Q. Shixaliyev, A. M. Maharramov, A. V. Gurbanov, V. G. Nenajdenko, V. M. Muzalevskiy, K. T. Mahmudov, M. N. Kopylovich, Catal. Today 2013, 217, 76.
| Crossref | GoogleScholarGoogle Scholar |
(m) H. Naïli, F. Hajlaoui, T. Mhiri, T. C. O. MacLeod, M. N. Kopylovich, K. T. Mahmudov, A. J. L. Pombeiro, Dalton Trans. 2013, 399.
| Crossref | GoogleScholarGoogle Scholar |
(n) A. M. Maharramov, R. A. Aliyeva, I. A. Aliyev, F. G. Pashaev, A. G. Gasanov, S. I. Azimova, R. K. Askerov, A. V. Kurbanov, K. T. Mahmudov, Dyes Pigments 2010, 85, 1.
| Crossref | GoogleScholarGoogle Scholar |
(o) A. M. Maharramov, R. A. Aliyeva, K. T. Mahmudov, A. V. Kurbanov, R. K. Askerov, Russ. J. Coord. Chem. 2009, 35, 704.
| Crossref | GoogleScholarGoogle Scholar |
(p) K. T. Mahmudov, M. F. C. Guedes da Silva, A. Mizar, M. N. Kopylovich, A. R. Fernandes, A. Silva, A. J. L. Pombeiro, J. Organomet. Chem. 2014, 760, 67.
| Crossref | GoogleScholarGoogle Scholar |
(q) K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Coord. Chem. Rev. 2017, 345, 54.
| Crossref | GoogleScholarGoogle Scholar |
(r) M. N. Kopylovich, K. T. Mahmudov, M. F. C. Guedes da Silva, A. M. Kirillov, A. J. L. Pombeiro, Dalton Trans. 2011, 40, 12472.
| Crossref | GoogleScholarGoogle Scholar |
(s) M. N. Kopylovich, M. F. C. Guedes da Silva, L. M. D. R. S. Martins, K. T. Mahmudov, A. J. L. Pombeiro, Polyhedron 2013, 50, 374.
| Crossref | GoogleScholarGoogle Scholar |
(t) A. Karmakar, A. Paul, K. T. Mahmudov, M. F. C. Guedes da Silva, A. J. L. Pombeiro, New J. Chem. 2016, 40, 1535.
| Crossref | GoogleScholarGoogle Scholar |
(u) C. A. Montoya, C. F. Gómez, A. B. Paninho, A. V. M. Nunes, K. T. Mahmudov, V. Najdanovic-Visak, L. M. D. R. S. Martins, M. F. C. Guedes da Silva, M. Nunes da Ponte, A. J. L. Pombeiro, J. Catal. 2016, 335, 135.
| Crossref | GoogleScholarGoogle Scholar |
(v) K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, ChemPlusChem 2014, 79, 1523.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S. R. Gadzhieva, T. M. Mursalov, K. T. Mahmudov, F. G. Pashaev, F. M. Chyragov, J. Anal. Chem. 2006, 61, 550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsV2jsLw%3D&md5=b84d96d4042c26d0a1d37eed0f8fd44cCAS |
(b) K. T. Makhmudov, R. A. Aliyeva, S. R. Gadjieva, F. M. Chyragov, J. Anal. Chem. 2008, 63, 435.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. T. Mahmudov, A. M. Maharramov, R. A. Aliyeva, I. A. Aliyev, M. N. Kopylovich, A. J. L. Pombeiro, Anal. Lett. 2010, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. R. Gadzhieva, T. M. Mursalov, K. T. Mahmudov, F. M. Chyragov, Russ. J. Coord. Chem. 2006, 32, 304.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. N. Kopylovich, T. C. O. Mac Leod, M. Haukka, G. I. Amanullayeva, K. T. Mahmudov, A. J. L. Pombeiro, J. Inorg. Biochem. 2012, 115, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVemtrnE&md5=b3d97abdd53fe5bd506472200b269227CAS |
[5] K. T. Mahmudov, M. N. Kopylovich, M. Haukka, G. S. Mahmudova, E. F. Esmaeila, F. M. Chyragov, A. J. L. Pombeiro, J. Mol. Struct. 2013, 1048, 108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SrsrnL&md5=769ea0da4b47f3c98a3d1483cb30dc13CAS |
[6] N. Kurono, T. Ohkuma, ACS Catal. 2016, 6, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVyrurrP&md5=e87b54a098809cc700aab97075769577CAS |
[7] S. S. Kim, D. W. Kim, G. Rajgopal, Synthesis 2004, 213.
| Crossref | GoogleScholarGoogle Scholar |
[8] B. M. Fetterly, J. G. Verkade, Tetrahedron Lett. 2005, 46, 8061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqt7%2FM&md5=f28acff2bf44668a466423cef1b5f976CAS |
[9] L. Wang, X. Huang, J. Jiang, X. Liu, X. Feng, Tetrahedron Lett. 2006, 47, 1581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGks7w%3D&md5=625e7afb7e301eb9a040aa81997d6ec1CAS |
[10] M. G. Dekamin, Z. Karimi, M. Farahmand, Catal. Sci. Technol. 2012, 2, 1375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCiu7g%3D&md5=fab5b7cd173936a53089bcacd25ec844CAS |
[11] J. J. Song, F. Gallou, J. T. Reeves, Z. Tan, N. K. Yee, C. H. Senanayake, J. Org. Chem. 2006, 71, 1273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVymtQ%3D%3D&md5=d802f347984bbfff72d281534509a350CAS |
[12] Y. Suzuki, M. D. Abu Baker, K. Muramatsu, M. Sato, Tetrahedron 2006, 62, 4227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslCgsL0%3D&md5=d356031ea68795dfc83725a2a8a970cbCAS |
[13] P. Saravanan, R. V. Anand, V. R. Singh, Tetrahedron Lett. 1998, 39, 3823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlamur4%3D&md5=9a8c6de8fbe0f4f38d519a2775e47330CAS |
[14] P. G. Gassman, J. J. Talley, Tetrahedron Lett. 1978, 19, 3773.
| Crossref | GoogleScholarGoogle Scholar |
[15] W. J. Greenlee, D. G. Hangauer, Tetrahedron Lett. 1983, 24, 4559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVeltg%3D%3D&md5=8b046182fb81555e6152eb407e212d27CAS |
[16] Y. Yang, D. Wang, Synlett 1997, 861.
| 1:CAS:528:DyaK2sXls1ygtrs%3D&md5=504a3aa878ce68dc8139b78cd96fec6aCAS |
[17] Y. Yang, D. Wang, Synlett 1997, 1379.
| 1:CAS:528:DyaK1cXksl2msA%3D%3D&md5=a4fc544efee6b5c30bbc01e8655d1a20CAS |
[18] S. Matsubara, T. Takai, K. Utimoto, Chem. Lett. 1991, 20, 1447.
| Crossref | GoogleScholarGoogle Scholar |
[19] N. Kurono, M. Yamaguchi, K. Suzuki, T. Ohkuma, J. Org. Chem. 2005, 70, 6530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ahu7s%3D&md5=edf3d9ca7da4a40c25747ea4053122b2CAS |
[20] G. Jenner, Tetrahedron Lett. 1999, 40, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpvVentA%3D%3D&md5=e03d47ac5da0ed82aeee44515a8254daCAS |
[21] N. Azizi, M. R. Saidi, J. Organomet. Chem. 2003, 688, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVSjs7k%3D&md5=8b0073d237ed1bdf8d9728da9eac1c5cCAS |
[22] J. K. Whitesell, R. Apodaca, Tetrahedron Lett. 1996, 37, 2525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVCjtbk%3D&md5=f03286d6a7cfecfea452d1540690f34dCAS |
[23] J. Wang, Y. Masui, K. Watanabe, M. Onaka, Adv. Synth. Catal. 2009, 351, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlSit7k%3D&md5=de4ecb73fab1aa1a4419b2b25c108bbbCAS |
[24] D. E. Ward, M. J. Hrapchak, M. Sales, Org. Lett. 2000, 2, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvF2qs70%3D&md5=2c247474459fd1260baed8a84585dbfcCAS |
[25] M. Curini, F. Epifanio, M. C. Marcotullio, O. Rosati, M. Rossi, Synlett 1999, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVGktb0%3D&md5=87aaf4d22e4f3c08a59de8d5fd69b503CAS |
[26] S. S. Kim, D. H. O. Song, Lett. Org. Chem. 2004, 1, 1264.
[27] S. S. Kim, G. Rajagopal, D. H. O. Song, J. Organomet. Chem. 2004, 68, 91734.
[28] S. K. De, R. A. Gibbs, J. Mol. Catal. A: Chem. 2005, 232, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVSjtb8%3D&md5=21c08ad9d4bdde09712e541012f85196CAS |
[29] M. Bandini, P. G. Cozzi, A. Garelli, P. Melchiorre, A. U. Ronchi, Eur. J. Org. Chem. 2002, 3243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnsl2rtrg%3D&md5=22b8e51c7026ed06be0b4ef923982dc5CAS |
[30] S. S. Kim, G. Rajgopal, Synthesis 2007, 215.
| Crossref | GoogleScholarGoogle Scholar |
[31] N. H. Khan, S. Agrawal, R. I. Kureshy, S. H. R. Abdi, S. Singh, R. V. Jasra, J. Organomet. Chem. 2007, 692, 4361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1WrtLo%3D&md5=836f2cc8d80a0d8c68ab6040b910facbCAS |
[32] A. G. Mahmoud, K. T. Mahmudov, M. F. C. Guedes da Silva, A. J. L. Pombeiro, RSC Adv. 2016, 6, 54263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XovFWktb4%3D&md5=f859e08cf7e705780bf9c07a4baa65a7CAS |
[33] Z. Ma, A. V. Gurbanov, A. M. Maharramov, F. I. Guseinov, M. N. Kopylovich, F. I. Zubkov, K. T. Mahmudov, A. J. L. Pombeiro, J. Mol. Catal. A: Chem 2017, 428, 17.
| 1:CAS:528:DC%2BC28XitVWmtLjI&md5=bc24d8614c345dcdf6f33671033114cbCAS |
[34] (a) A. V. Gurbanov, K. T. Mahmudov, M. Sutradhar, M. F. C. Guedes da Silva, T. A. Mahmudov, F. I. Guseinov, F. I. Zubkov, A. M. Maharramov, A. J. L. Pombeiro, J. Organomet. Chem. 2017, 834, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjs1Onurg%3D&md5=ac7cf99fbfe0fd212c2cc949a77d28c2CAS |
(b) A. V. Gurbanov, G. Mahmoudi, M. F. C. Guedes da Silva, F. I. Zubkov, K. T. Mahmudov, A. J. L. Pombeiro, Inorg. Chim. Acta 2018, 471, 130.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. E. Huseynov, N. T. Shamilov, K. T. Mahmudov, A. M. Maharramov, M. F. C. Guedes da Silva, A. J. L. Pombeiro, J. Organomet. Chem. 2018,
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Karmakar, S. Hazra, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Dalton Trans. 2015, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOisLvN&md5=53d1039b9acd41d94545374696d9e4beCAS |
[36] S. Martin, R. Porcar, E. Peris, M. I. Burguete, E. G. Verdugo, S. V. Luis, Green Chem. 2014, 16, 1639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFOlu7s%3D&md5=7161dfe492ebb730bc2827213a49d687CAS |
[37] Y. Jia, S. Zhao, Y.-F. Song, Appl. Catal. A 2014, 487, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyltLnJ&md5=1bf9275ce33dca1f52f37b6f78b50430CAS |
[38] P. K. Batista, D. J. M. Alves, M. O. Rodrigues, G. F. DeSá, S. A. Junior, J. A. Vale, J. Mol. Catal. A: Chem. 2013, 379, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CqsbzJ&md5=4f1dac2fd538dc34049b33bb70c06d29CAS |
[39] L. Liu, Z.-B. Han, S.-M. Wang, D.-Q. Yuan, S. W. Ng, Inorg. Chem. 2015, 54, 3719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtF2gu74%3D&md5=a4f6eed617b76f3a97929d22fddec28eCAS |
[40] X. Cui, M. C. Xu, L. J. Zhang, R. X. Yao, X. M. Zhang, Dalton Trans. 2015, 12711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWqsbjJ&md5=46fb545e0855568ebb782e25618e0eccCAS |
[41] X. M. Zhang, C. W. Zhao, J. P. Ma, Y. Yu, Q.-K. Liu, Y. B. Dong, Chem. Commun. 2015, 839.
| Crossref | GoogleScholarGoogle Scholar |
[42] X. M. Lin, J. L. Niu, P. X. Wen, Y. Pang, L. Hu, Y. P. Cai, Cryst. Growth Des. 2016, 16, 4705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFWiu7fJ&md5=c9d1b99f3f859eacfcdbcea9b48e88b5CAS |
[43] A. Karmakar, G. M. D. M. Rúbio, A. Paul, M. F. C. Guedes da Silva, K. T. Mahmudov, F. I. Guseinov, S. A. C. Carabineiro, A. J. L. Pombeiro, Dalton Trans. 2017, 8649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXps1Gmtrs%3D&md5=06fd72e10d8614826f009d53a8829210CAS |
[44] K. Iwanami, M. Aoyagi, T. Oriyama, Tetrahedron Lett. 2005, 46, 7487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVClu7fJ&md5=d3dd7ae7e61a1bd7aba0572b7409a067CAS |
[45] K. S. Lee, R. M. Anisur, K. W. Kim, W. S. Kim, T.-J. Park, E. J. Kang, I. S. Lee, Chem. Mater. 2012, 24, 682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVCjt7g%3D&md5=79f509b4f324e213bbdf9822b7a5abd2CAS |
[46] K. Iwanami, T. Oriyama, Chem. Lett. 2004, 33, 1324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVyns7g%3D&md5=e6b7f791e8d944a19fa92293e6dbfdfbCAS |
[47] M. Itazaki, H. Nakazawa, Chem. Lett. 2005, 34, 1054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlCntL8%3D&md5=f66f7ea9f475b821ae6a468e27519353CAS |
[48] M. North, M. Omedes-Pujol, Beilstein J. Org. Chem. 2010, 6, 1043.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGjs7nL&md5=c1b9c791fc2184f18ef07b368962ba30CAS |
[49] Z. Zhang, J. Chen, Z. Bao, G. Chang, H. Xing, Q. Ren, RSC Adv. 2015, 5, 79355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWlsr7P&md5=0d300b75813e11ad3de94b1f9d1e8e41CAS |
[50] G. Rajagopal, S. Selvaraj, K. Dhahagani, Tetrahedron Asymmetry 2010, 21, 2265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmu7nJ&md5=35c531655b85009e586b66144d9c136dCAS |
[51] S. Neogi, M. K. Sharma, P. K. Bharadwaj, J. Mol. Catal. A: Chem. 2009, 299, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlyjtQ%3D%3D&md5=306a622f64885c806ad834f6538865b8CAS |
[52] W. W. Lestari, P. Lönnecke, H. C. Streit, F. Schleife, C. Wickleder, E. Hey-Hawkins, Inorg. Chim. Acta 2014, 421, 392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1CrsrfO&md5=e3c260948a8034aec4600e8c689ba59cCAS |
[53] E. Błocka, M. J. Bosiak, M. Wełniak, A. Ludwiczak, A. Wojtczak, Tetrahedron Asymmetry 2014, 25, 554.
| Crossref | GoogleScholarGoogle Scholar |
[54] S. S. Kim, Pure Appl. Chem. 2006, 78, 977.
| 1:CAS:528:DC%2BD28XlvVOnu7c%3D&md5=d201fdc7177fcd489db7adac5161dfddCAS |
[55] Y. Hamashima, D. Sawada, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 1999, 121, 2641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVakur8%3D&md5=79a3ae8362593eeff40e7a4f63c1902dCAS |