Effect of Structured Surfaces on MALDI Analyte Peak Intensities*
Sajid Bashir A B E , Jingbo L. Liu B and Peter J. Derrick A C DA Institute of Mass Spectrometry, University of Warwick, Coventry, CV4 7AL, UK.
B Texas A&M University – Kingsville, Department of Chemistry, MSC 161, 700 University Boulevard, Kingsville, TX 78363, USA.
C Department of Physics, The University of Auckland, 7 Symonds Street, Auckland 1061, New Zealand.
D Deceased.
E Corresponding author. Email: br9@hotmail.com
Australian Journal of Chemistry 70(12) 1312-1316 https://doi.org/10.1071/CH17456
Submitted: 8 August 2017 Accepted: 5 September 2017 Published: 6 October 2017
Abstract
A surface modification method is presented: a sodium chloride crystal, a transparent wide bandgap insulator, was deposited onto a stainless steel surface. The surface was subjected to various stimuli to induce surface defects either on the steel surface or salt crystal and the ion yield of substance P, a model peptide, was investigated as a function of stimuli. The interaction of the laser at potential defect sites resulted in an increase in the ion yield of substance P (3–17 fold increase relative to no stimuli).
References
[1] M. Karas, U. Bahr, U. Gießmann, Mass Spectrom. Rev. 1991, 10, 335.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlSqt7s%3D&md5=e8fe0e27feb65e7947f3e7637218dcbbCAS |
[2] J. Wei, J. M. Buriak, G. Siuzdak, Nature 1999, 399, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFyku7c%3D&md5=76ff922fa67457870bdcb54086c861e2CAS |
[3] J. Sunner, E. Dratz, Y. C. Chen, Anal. Chem. 1995, 67, 4335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFSktrY%3D&md5=dd783dc3adeefb108b65c3df4048923aCAS |
[4] Special issue devoted to matrix-assisted laser desorption/ionization: Various, Int. J. Mass Spectrom. Ion Process. 1997, 169/170, 1.
[5] Special issue devoted to laser ablation of molecular substrates: Various, Chem. Rev. 2003, 103, 1.
[6] S. Alimpiev, S. Nikiforov, V. Karavanskii, T. Minton, J. Sunner, J. Chem. Phys. 2001, 115, 1891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFCltLY%3D&md5=5db4dbea279c40b605ab8740d28c85dcCAS |
[7] K. Dreisewerd, M. Schürenberg, M. Karas, F. Hillenkamp, Int. J. Mass Spectrom. Ion Process. 1995, 141, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFeqtr8%3D&md5=eb13183b03c0d9ec4972bc708fda775aCAS |
[8] W. Ens, Y. Mao, F. Mayer, K. G. Standing, Rapid Commun. Mass Spectrom. 1991, 5, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFOgs74%3D&md5=a49c22db641d18c98a899f742ecb9db0CAS |
[9] P. Y. Yau, T. W. D. Chan, P. G. Cullis, A. W. Colburn, P. J. Derrick, Chem. Phys. Lett. 1993, 202, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXis1ehs70%3D&md5=b959af83b29727dc7312a5fea4a84fdfCAS |
[10] M. Karas, U. Bahr, U. Gießmann, Mass Spectrom. Rev. 1991, 10, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlSqt7s%3D&md5=e8fe0e27feb65e7947f3e7637218dcbbCAS |
[11] T. W. D. Chan, A. W. Colburn, P. J. Derrick, J. Mass Spectrom. 1992, 27, 53.
| 1:CAS:528:DyaK38XhsVOhurk%3D&md5=d31614eda246f5d0e847aa52a7443596CAS |
[12] A. M. Hoberg, D. M. Haddleton, P. J. Derrick, J. H. Scrivens, Eur. J. Mass Spectrom. 1997, 3, 471.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. C. Fitzgerald, L. M. Smith, Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt1ams7k%3D&md5=e470f042c3c6c946390eeddba383eb6dCAS |
[14] L. V. Zhigilei, B. J. Garrison, Appl. Phys. A: Mater. Sci. Process. 1999, 69, S75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Sht7Y%3D&md5=e30d0a4b3dba5b86614a08d3ea0f146cCAS |
[15] M. Wiegelmann, J. Soltwisch, T. W. Jaskolla, K. Dreisewerd, Anal. Bioanal. Chem. 2013, 405, 6925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qtLrE&md5=9a6c9c3e2a7a36758f0b5c3011fecfa8CAS |
[16] W. C. Chang, L. C. L. Huang, Y. S. Wang, W. P. Peng, H. C. Chang, N. Y. Hsu, W. B. Yang, C. H. Chen, Anal. Chim. Acta 2007, 582, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlart7nI&md5=f49aa2f8175760a643dc57ab4d9ce80bCAS |
[17] J. Soltwisch, T. W. Jaskolla, K. Dreisewerd, J. Am. Soc. Mass Spectrom. 2013, 24, 1477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oqtb%2FK&md5=6cb61de0f495ce92567e49f9027fc6a6CAS |
[18] R. Knochenmuss, R. Zenobi, Chem. Rev. 2003, 103, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCnsrc%3D&md5=458f1ccb8e4b35b33c3191a509d76cbcCAS |
[19] M. Karas, R. Krüger, Chem. Rev. 2003, 103, 427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFKhtw%3D%3D&md5=28f7fcbfbe6fbe5299357e9cd5dfc761CAS |
[20] R. D. Burton, C. H. Watson, J. R. Eyler, G. L. Lang, D. H. Powell, M. Y. Avery, Rapid Commun. Mass Spectrom. 1997, 11, 443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFeitbo%3D&md5=ea21844715a149536c7b255dffb952deCAS |
[21] T. W. Jaskolla, M. Karas, J. Am. Soc. Mass Spectrom. 2008, 19, 1054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Wlsb8%3D&md5=c2a23b5f30ca041b34b9a81641d0037eCAS |
[22] G. McCombie, R. Knochenmuss, Anal. Chem. 2004, 76, 4990.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVOnt74%3D&md5=30d3c3eab9b578794a7e814836d1f1a8CAS |
[23] S. D. Hanton, K. G. Owens, C. Chavez-Eng, A. M. Hoberg, P. J. Derrick, Eur. J. Mass Spectrom. (Chichester, Eng.) 2005, 11, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyhu74%3D&md5=42fe16654f56c1499778084e1b691277CAS |
[24] M. Karas, U. Bahr, I. Fournier, M. Glückmann, A. Pfenninger, Int. J. Mass Spectrom. 2003, 226, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1egt7Y%3D&md5=31815b76431df9f334bf018334d7a711CAS |
[25] M. Karas, M. Glückmann, J. Schäfer, J. Mass Spectrom. 2000, 35, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVans7g%3D&md5=437351b1a94dd8b4b3a47c803c393b2fCAS |
[26] M. Mormann, S. Bashir, P. J. Derrick, D. Kuck, J. Am. Soc. Mass Spectrom. 2000, 11, 544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Snsb4%3D&md5=969c7d2081d288cee0196f16608bd22bCAS |
[27] E. Various, J. Mass Spectrom. 2006, 12, 345.
[28] A. A. Puretzky, D. B. Geohegan, Chem. Phys. Lett. 1998, 286, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Sksbg%3D&md5=e1908e23b1c991320c3a8fbf39f538d4CAS |
[29] Special issue devoted to MALDI ionization mechanisms; Tanaka received a Nobel Prize for his work on MALDI: K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Rapid Commun. Mass Spectrom. 1988, 2, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjtVSgug%3D%3D&md5=30c59328f27813c81e5e000e12c09d05CAS |
[30] K. Dreisewerd, Chem. Rev. 2003, 103, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFaruw%3D%3D&md5=a635005fd351dbefe34ae8a41391f803CAS |
[31] R. Zenobi, R. Knochenmuss, Mass Spectrom. Rev. 1998, 17, 337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVagsbw%3D&md5=d46efb1e9d7ae1eaf0db7701db9574e9CAS |
[32] S. F. Macha, P. A. Limbach, S. D. Hanton, K. G. Owens, J. Am. Soc. Mass Spectrom. 2001, 12, 732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFGqs74%3D&md5=edd4aa35cc1e44019003468122f896ddCAS |
[33] W. I. Burkitt, A. E. Giannakopulos, F. Sideridou, S. Bashir, P. J. Derrick, Aust. J. Chem. 2003, 56, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksleqt7Y%3D&md5=483a996fd6639b8a36339ed1e7427372CAS |
[34] T. W. D. Chan, A. W. Colburn, P. J. Derrick, J. Mass Spectrom. 1991, 26, 342.
| 1:CAS:528:DyaK3MXisVekt70%3D&md5=d7eeac67e96b1756a91eecece006a403CAS |
[35] G. McCombie, R. Knochenmuss, J. Am. Soc. Mass Spectrom. 2006, 17, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFynt7Y%3D&md5=ac5c207000e7312c063af26fab03ee1bCAS |
[36] R. Knochenmuss, Anal. Chem. 2004, 76, 3179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFGgsb8%3D&md5=a41065259dc170a45acfdc45df2b81b2CAS |
[37] K. Tanaka, Angew. Chem. Int. Ed. Engl. 2003, 42, 3860.
| Crossref | GoogleScholarGoogle Scholar |
[38] E. P. Go, J. V. Apon, G. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, G. Siuzdak, Anal. Chem. 2005, 77, 1641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgs70%3D&md5=ff7eff97fa5aa53c8787e52ebcc6007bCAS |
[39] T. Redeby, J. Roeraade, Å. Emmer, Rapid Commun. Mass Spectrom. 2004, 18, 1161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ylur4%3D&md5=0e3a03827241a326817d9583e17c6277CAS |
[40] Y. Xu, M. L. Bruening, J. T. Watson, Mass Spectrom. Rev. 2003, 22, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlahsro%3D&md5=4c0e9f2475dc2f69404516594ab75aceCAS |
[41] Y. J. Twu, C. W. S. Conover, Y. A. Yang, L. A. Bloomfield, Phys. Rev. B 1990, 42, 5306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVSlsLg%3D&md5=f3235a470b28e3eff3e6e2f4d6f456c7CAS |
[42] R. Knochenmuss, Anal. Chem. 2003, 75, 2199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFagur8%3D&md5=8da8a868a3571e8f2b6b4fac7bdcd6feCAS |
[43] T. W. Jaskolla, M. Karas, J. Am. Soc. Mass Spectrom. 2011, 22, 976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Ohsrc%3D&md5=e01b2d6a2e53535bbf98ab1f7b240bc4CAS |
[44] D. R. Ermer, J. J. Shin, S. C. Langford, K. W. Hipps, J. T. Dickinson, J. Appl. Phys. 1996, 80, 6452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1eku7k%3D&md5=1b1355fc21853ffe271caaf4633ff367CAS |
[45] G. Westmacott, W. Ens, F. Hillenkamp, K. Dreisewerd, M. Schürenberg, Int. J. Mass Spectrom. 2002, 221, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWmur4%3D&md5=5b8a1f7382dba0978c2da03250de1d78CAS |
[46] E. Stenzel, S. Gogoll, J. Sils, M. Huisinga, H. Johansen, G. Kästner, M. Reichling, E. Matthias, Appl. Surf. Sci. 1997, 109–110, 162.
| Crossref | GoogleScholarGoogle Scholar |
[47] V. Frankevich, R. Knochenmuss, R. Zenobi, Int. J. Mass Spectrom. 2002, 220, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1GhsLY%3D&md5=a865c324dcbbb2bc91c34f5730fdbceeCAS |
[48] (a) J. T. Dickinson, in Laser Ablation and Desorption (Eds J. C. Miller, R. F. Haglund) 1998, Vol. 30, Ch. 3, pp. 139–172 (Academic Press: New York, NY).
(b) J.A. Carroll, R. C. Beavis, in Laser Ablation and Desorption (Eds J. C. Miller, R. F. Haglund) 1998, Vol. 30, Ch. 9, pp. 413–448 (Academic Press, New York, NY).
[49] R. Knochenmuss, L. V. Zhigilei, Anal. Bioanal. Chem. 2012, 402, 2511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlKntLY%3D&md5=25f73459d87ab0b9f5d7d17a0feb84c0CAS |
[50] R. Knochenmuss, A. Stortelder, K. Breuker, R. Zenobi, J. Mass Spectrom. 2000, 35, 1237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosl2mtbk%3D&md5=1028551fda91015b36a4b718a6882f1cCAS |
[51] Data from C. Binek: http://physics.unl.edu/~cbinek/Unit4_Ionic%20Bond.pptx
[52] R. N. Barnett, U. Landman, J. Phys. Chem. 1996, 100, 13950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksV2rtLc%3D&md5=2d830e821fc8bcec76b7203e307712b0CAS |
[53] J. A. Mejias, Phys. Rev. B 1996, 53, 10281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis12gsL0%3D&md5=544b33e965602ef1b551578dffb5a665CAS |
[54] E. H. Khan, S. C. Langford, J. T. Dickinson, L. A. Boatner, J. Appl. Phys. 2013, 114, 053511.
| Crossref | GoogleScholarGoogle Scholar |
[55] Q. Zhang, H. Zou, Z. Guo, W. Zhang, X. Chen, J. Ni, Rapid Commun. Mass Spectrom. 2001, 15, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Kmtbs%3D&md5=5e59715e6f0d34ed1e319b2a53f105bdCAS |
[56] C. Bandis, S. C. Langford, J. T. Dickinson, D. R. Ermer, N. Itoh, J. Appl. Phys. 2000, 87, 1522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVeqsQ%3D%3D&md5=9824f80ec4c485dcdea5ffc6188c8447CAS |
[57] J. T. Dickinson, C. Bandis, S. C. Langford, Mater. Res. Soc. Symp. Proc. 2000, 617, J1.
| Crossref | GoogleScholarGoogle Scholar |
[58] J. Soltwisch, T. W. Jaskolla, F. Hillenkamp, M. Karas, K. Dreisewerd, Anal. Chem. 2012, 84, 6567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKlurg%3D&md5=973d77faebd43936fb0b704ea836c336CAS |
[59] H. Ehring, B. U. Sundqvist, J. Mass Spectrom. 1995, 30, 1303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFWru7k%3D&md5=d54f9fe4c17ba187c97d5b0408e666eeCAS |
[60] C. Bandis, S. C. Langford, J. T. Dickinson, Appl. Phys. Lett. 2000, 76, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVartw%3D%3D&md5=acfaa697f721f523c0d8bbf68186a0e8CAS |
[61] R. Knochenmuss, A. Vertes, J. Phys. Chem. B 2000, 104, 5406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1elt7k%3D&md5=d4381b9b06185874d9b49118e64902f8CAS |
[62] F. Hillenkamp, M. Karas, R. C. Beavis, B. T. Chait, Anal. Chem. 1991, 63, 1193A.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsFWhsLg%3D&md5=e75c628db3b5d38d9fb79e3d16651dceCAS |
[63] S. Trimpin, B. Wang, E. D. Inutan, J. Li, C. B. Lietz, A. Harron, V. S. Pagnotti, D. Sardelis, C. N. McEwen, J. Am. Soc. Mass Spectrom. 2012, 23, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSqsL%2FL&md5=1ec319112380e2abd52f46e4bac21b44CAS |
[64] R. Knochenmuss, Analyst 2014, 139, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGhtbbM&md5=a50d56760b953fea7660de25aacd7a1aCAS |
[65] K. Dreisewerd, Anal. Bioanal. Chem. 2014, 406, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslGqtr8%3D&md5=d54ab71e6fcb661946bd492ad74f11f0CAS |