Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Cancer Nanotheranostics System Based on Quantum Dots Encapsulated by a Polymer-Prodrug with Controlled Release Behaviour

Hai-Kang Huang A , Jing Yan A , Pei Liu A , Bi-Yun Zhao A , Yi Cao B C and Xue-Fei Zhang A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.

B Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, Xiangtan 411105, Hunan Province, China.

C Corresponding authors. Email: caoyi39@xtu.edu.cn; zxf7515@163.com

Australian Journal of Chemistry 70(12) 1302-1311 https://doi.org/10.1071/CH17277
Submitted: 22 May 2017  Accepted: 7 July 2017   Published: 21 August 2017

Abstract

A nanotheranostic system is a new system that combines both diagnosis and treatment of a malignant disease, e.g. cancer, by exploitation of the unusual properties of nano-sized particles. In this project, we have developed a novel nanotheranostic system based on quantum dots (QDs) coated with drug-loaded polymer. We first synthesized a double-group functionalized amphiphilic triblock copolymer and loaded it with the anti-tumour drug paclitaxel (PTX) and lipoic acid (LA) to obtain the prodrug mPEG-block-PCL-(graft-PTX)-block-PLA-(graft-LA) (mPEG: methoxy polyethylene glycol, PLA: poly(norbornene-lactide)s). When exposed to UV light (365 nm), the disulfide bond of LA was broken into two sulfydryls, which could in turn adhere to the surface of CdSe/ZnS QDs to form a nanotheranostic system. This novel system exhibited good controlled drug release behaviour due to the ester linkage between the drug and polymer. By using typical cancer cell lines, we showed that this nanotheranostic system is promising in cancer diagnosis and treatment in vitro.


References

[1]  (a) J. Funkhouser, Curr. Drug Discov. 2002, 2, 17.
      (b) S. S. Kelkar, T. M. Reineke, Bioconjug. Chem. 2011, 22, 1879.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  N. Ahmed, H. Fessi, A. Elaissari, Drug Discov. Today 2012, 17, 928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSlu7Y%3D&md5=8341f81963305dcd1c4f488c33b0edabCAS |

[3]  (a) N. Pavlidis, E. Briasoulis, J. Hainsworth, F. Greco, Eur. J. Cancer 2003, 39, 1990.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svhslyrsA%3D%3D&md5=71a677ed052f924a53fb93cdad7658feCAS |
      (b) M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W. T. Al-Jamal, K. Kostarelos, Acc. Chem. Res. 2011, 44, 1094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslWrur4%3D&md5=38e2bbfaa392619b674ff121166029ddCAS |

[5]  Y. Zhang, Y. Chen, D. Han, I. Ocsoy, W. Tan, Bioanalysis 2010, 2, 907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFCgtr4%3D&md5=d7d2c29e0c5f7411900b4552de1750ebCAS |

[6]  B. T. Luk, R. H. Fang, L. Zhang, Theranostics 2012, 2, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFKmur4%3D&md5=ecea8ccc5943b85ec50a76b8fd9a5f15CAS |

[7]  Y.-P. Ho, K. W. Leong, Nanoscale 2010, 2, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFynsLg%3D&md5=d837bff4f8fd66714d85a9bdae282c4aCAS |

[8]  P. P. Shanbhag, S. V. Jog, M. M. Chogale, S. S. Gaikwad, Curr. Drug Deliv. 2013, 10, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. Singh, K. Joshi, D. Guin, A. A. Prabhune, RSC Adv. 2013, 3, 22319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsbbF&md5=681dc39daaa0ef5b45f083dff49cce50CAS |

[10]  A. Tan, L. Yildirimer, J. Rajadas, H. De La Peña, G. Pastorin, A. Seifalian, Nanomedicine 2011, 6, 1101.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C.-J. Wen, L.-W. Zhang, S. A. Al-Suwayeh, T.-C. Yen, J.-Y. Fang, Int. J. Nanomedicine 2012, 7, 1599.
         | 1:CAS:528:DC%2BC38XlsFyrsb4%3D&md5=699c2ddaf9660e7f618973d979496622CAS |

[12]  S. L. Sewell, T. D. Giorgio, Mater. Sci. Eng. C 2009, 29, 1428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOgtLY%3D&md5=079d710d72fdf0c982fd8274c0f81dbcCAS |

[13]  (a) K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, H. Mattoussi, J. Am. Chem. Soc. 2007, 129, 13987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltLrN&md5=baa6f7b572db70b8305231ce40bd9538CAS |
      (b) N. Zhan, G. Palui, H. Mattoussi, Nat. Protoc. 2015, 10, 859.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) F. Ye, Å. Barrefelt, H. Asem, M. Abedi-Valugerdi, I. El-Serafi, M. Saghafian, K. Abu-Salah, S. Alrokayan, M. Muhammed, M. Hassan, Biomaterials 2014, 35, 3885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Clt7s%3D&md5=e3bff98f2a56f12ea1a9651afeec7d87CAS |
      (b) J. Yuan, W. Guo, X. Yang, E. Wang, Anal. Chem. 2009, 81, 362.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) M. S. Muthu, S. A. Kulkarni, A. Raju, S.-S. Feng, Biomaterials 2012, 33, 3494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVShsLk%3D&md5=96a813f931700f93cb565262f396318fCAS |
      (b) R. Gui, A. Wan, Y. Zhang, H. Li, T. Zhao, Anal. Chem. 2014, 86, 5211.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) K. A. Athanasiou, G. G. Niederauer, C. M. Agrawal, Biomaterials 1996, 17, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslektA%3D%3D&md5=fd703c49ddbf1741616b0640ecf20b5bCAS |
      (b) A. K. Patri, I. J. Majoros, J. R. Baker, Curr. Opin. Chem. Biol. 2002, 6, 466.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) H. Tang, C. J. Murphy, B. Zhang, Y. Shen, M. Sui, E. A. Van Kirk, X. Feng, W. J. Murdoch, Nanomedicine 2010, 5, 855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtL7N&md5=6c9db800aed9ee726627a5f6fd9ca429CAS |
      (b) M. Xu, J. Qian, X. Liu, T. Liu, H. Wang, Mater. Sci. Eng. C 2015, 50, 341.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) J. Wang, H. Sun, D. Li, J. Yuan, X. Zhang, H. Tang, Aust. J. Chem. 2015, 68, 1136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFaisLzE&md5=4d5ececae15862b8e8c79bc898fd8e88CAS |
      (b) J. Wang, H. Zhou, Q. Zheng, J. Yan, P. Liu, G. Li, X. Zhang, H. Tang, Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 789.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, H. Brem, Adv. Drug Deliv. Rev. 2016, 107, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Sgs7%2FO&md5=1039aa89363d4c505b460591854811dfCAS |
      (b) Z. Li, L. Qiu, Q. Chen, T. Hao, M. Qiao, H. Zhao, J. Zhang, H. Hu, X. Zhao, D. Chen, L. Mei, Acta Biomater. 2015, 11, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  F. Liu, H. Huang, Y. Gong, J. Li, X. Zhang, Y. Cao, Chem. Biol. Interact. 2017, 263, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFOhsLrL&md5=448c2b305bc1894b5c7686e3d83c6c60CAS |

[21]  B. C. Mei, K. Susumu, I. L. Medintz, J. B. Delehanty, T. Mountziaris, H. Mattoussi, J. Mater. Chem. 2008, 18, 4949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CqsL3P&md5=bc15815f35b47bb3d80c06f86854fddbCAS |

[22]  (a) G. Bucher, C. Lu, W. Sander, ChemPhysChem 2005, 6, 2607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleqtL7E&md5=a97971bc4adf3db09698e6adb0fe4a02CAS |
      (b) N. Zhan, G. Palui, A. Kapur, V. Palomo, P. E. Dawson, H. Mattoussi, J. Am. Chem. Soc. 2015, 137, 16084.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) S. Honary, F. Zahir, Trop. J. Pharm. Res. 2013, 12, 255.
      (b) D. K. W. Man, L. Casettari, M. Cespi, G. Bonacucina, G. F. Palmieri, S. C. W. Sze, G. P. H. Leung, J. K. W. Lam, P. C. L. Kwok, Mol. Pharm. 2015, 12, 2112.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  W. Wang, A. Kapur, X. Ji, M. Safi, G. Palui, V. Palomo, P. E. Dawson, H. Mattoussi, J. Am. Chem. Soc. 2015, 137, 5438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvFWitr4%3D&md5=46c7f85e024f17b032303f32ba38251dCAS |

[25]  F. Jing, M. A. Hillmyer, J. Am. Chem. Soc. 2008, 130, 13826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKqsrnP&md5=95bb5856252c27788a89e3608e8704d2CAS |

[26]  M. S. Muthu, R. V. Kutty, Z. Luo, J. Xie, S.-S. Feng, Biomaterials 2015, 39, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFant7fP&md5=e1e01a001a90e993c0c502a6b794cd57CAS |

[27]  C. Deng, Y. Jiang, R. Cheng, F. Meng, Z. Zhong, Nano Today 2012, 7, 467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCqs7rF&md5=2326d84d17a23b38b32ced8a3a7d3f63CAS |

[28]  J. Pan, S.-S. Feng, Biomaterials 2009, 30, 1176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCisrbJ&md5=187cdc722d9eac8d4548b9cec0cc6d37CAS |

[29]  (a) J. R. Moon, M. W. Kim, D. Kim, J. H. Jeong, J.-H. Kim, Colloid Polym. Sci. 2011, 289, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2itbrF&md5=5b888f4bbea911a87ceee63e30d4ee53CAS |
      (b) J. Pietkiewicz, K. Zielińska, J. Saczko, J. Kulbacka, M. Majkowski, K. A. Wilk, Eur. J. Pharm. Sci. 2010, 39, 322.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. H. Lee, J. Y. Kim, J. H. Han, S. Bhuniya, J. L. Sessler, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2012, 134, 12668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2gtb8%3D&md5=4cee88dd8b8417793a97153b5994af1eCAS |

[31]  I. Noh, H.-O. Kim, J. Choi, Y. Choi, D. K. Lee, Y.-M. Huh, S. Haam, Biomaterials 2015, 53, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksF2ksrk%3D&md5=6ca8f28312f8350b8e436e6f6443e6e9CAS |

[32]  G. Xu, S. Lin, W.-C. Law, I. Roy, X. Lin, S. Mei, H. Ma, S. Chen, H. Niu, X. Wang, Theranostics 2012, 2, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCqsbnM&md5=4a6412354a4b9feaae2d439b412b69a5CAS |

[33]  B. Yu, Y. Zhang, W. Zheng, C. Fan, T. Chen, Inorg. Chem. 2012, 51, 8956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKlsrzF&md5=9faef2fcea010f8cca2f85c65118d69bCAS |

[34]  F.-F. Zheng, P.-H. Zhang, Y. Xi, J.-J. Chen, L.-L. Li, J.-J. Zhu, Anal. Chem. 2015, 87, 11739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGmsrrM&md5=849167b65822efa5160dc66bf1803485CAS |