Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ultrafast NH3 Sensing Properties of WO3@CoWO4 Heterojunction Nanofibres at Room Temperature

Yiming Zhao A , Muhammad Ikram A , Jianzhou Wang A , Zhi Liu A , Lijuan Du E , Jiao Zhou A , Kan Kan C , Weijun Zhang D , Li Li A B F and Keying Shi A F
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.

B Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, Heilongjiang University, Harbin 150080, China.

C Daqing Branch, Heilongjiang Academy of Sciences, Daqing 163319, China.

D Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China.

E Modern Experiment Center, Harbin Normal University, Harbin 150025, China.

F Corresponding authors. Email: llwjjhlju@sina.cn; shikeying2008@163.com

Australian Journal of Chemistry 71(3) 87-94 https://doi.org/10.1071/CH17354
Submitted: 28 June 2017  Accepted: 21 September 2017   Published: 18 October 2017

Abstract

Highly selective detection, quick response times (<5 s), and superior response (|RnRa|/Ra = 1.17) to NH3 gas, particularly at room temperature (RT), are still enormous challenges in gas sensor applications. In this paper, a rational design and facile synthesis for a NH3 sensor have been proposed. Massage ball-like WO3@CoWO4 (Co-W) nanofibres (NFs) were prepared by a facile one-step synthesis utilising an electrospinning approach, followed by appropriate calcination. A Co-W NF sensor with a Co-to-W atomic ratio of 3 : 10 (Co-W-3), which consisted of nano-sized WO3 protrusions (10–15 nm) on submicrometre-sized single crystal CoWO4 particles (100–150 nm) exhibited excellent gas-sensing properties at RT due to the single crystal CoWO4–CoWO4 homojunction structure and distinct massage ball-like WO3–CoWO4 heterojunction. The approach developed in this work will be important for the low-cost and large-scale production of a Co-W-3 ultrafast sensing material with highly promising applications in gas sensors.


References

[1]  Q. X. Nie, Z. Y. Pang, H. Y. Lu, Y. B. Cai, Q. F. Wei, Beilstein J. Nanotechnol. 2016, 7, 1312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVOntbY%3D&md5=f63680e893c8901544b5c1a42c42492aCAS |

[2]  R. Zhang, T. T. Zhou, L. L. Wang, Z. Lou, J. N. Deng, T. Zhang, New J. Chem. 2016, 40, 6796.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XovFWksro%3D&md5=45e3bbd2fd9a0c83b1ef26b348913d3fCAS |

[3]  P. Chesler, C. Hornoiu, S. Mihaiu, C. Vladut, J. M. C. Moreno, M. Anastasescu, C. Moldovan, B. Firtat, C. Brasoveanu, G. Muscalu, I. Stan, M. Gartner, Beilstein J. Nanotechnol. 2016, 7, 2045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXos1Kmsro%3D&md5=b0d55427f5c883234e584a6a0996478fCAS |

[4]  S. Park, S. Kim, W. I. Lee, K. Kim, C. M. Lee, Beilstein J. Nanotechnol. 2014, 5, 1836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGqurfE&md5=500581a05bf7b441f79b447f0ae19672CAS |

[5]  S. Hussain, T. Liu, M. Kashif, L. Y. Lin, S. F. Wu, W. W. Guo, W. Zeng, U. Hahim, Mater. Sci. Semicond. Process. 2014, 18, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFalsQ%3D%3D&md5=5d70f20fb1cb816e4b4f544c021d7b76CAS |

[6]  T. X. Fu, Electrochim. Acta 2013, 112, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSku7nI&md5=e37272c8b8fe0ffdc7b83a3f3dc718daCAS |

[7]  X. Liu, N. Chen, B. Q. Han, X. C. Xiao, G. Chen, I. Djerdj, Y. D. Wang, Nanoscale 2015, 7, 14872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSlurrI&md5=d7802d0ae51ae24f26127550e5d41b1bCAS |

[8]  W. W. Meng, L. Dai, J. Zhu, Y. H. Li, W. Meng, H. Z. Zhou, L. Wang, Electrochim. Acta 2016, 193, 302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivFKltbo%3D&md5=2083285f0161627599db9f3af4750ac5CAS |

[9]  V. Dhanasekaran, N. Soundaram, S. I. Kim, R. Chandramohan, S. Mantha, S. Saravanakumarb, T. Mahalingam, New J. Chem. 2014, 38, 2327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2ju70%3D&md5=70a5e3e7cac4384dfd0b8006bb33d518CAS |

[10]  P. Deka, R. C. Deka, P. Bharali, New J. Chem. 2016, 40, 348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslCmurbL&md5=6bec7cac8977863bf568c9b69983c45fCAS |

[11]  Y. Hu, X. H. Zhou, Q. Han, Q. X. Cao, Y. X. Huang, Mater. Sci. Eng. B 2003, 99, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Q. Y. Yang, X. B. Cui, J. Y. Liu, J. Zhao, Y. L. Wang, Y. Gao, P. Sun, J. Ma, G. Y. Lu, New J. Chem. 2016, 40, 2376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XislOjtw%3D%3D&md5=5bb600bf5a85ba833875e572509f4ab9CAS |

[13]  Q. Diao, F. S. Yang, C. G. Yin, J. G. Li, S. Q. Yang, X. S. Liang, G. Y. Lu, Solid State Ion. 2012, 225, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFChurrI&md5=fa9053628697f849b77b10e7176be8efCAS |

[14]  Z. J. Li, Z. J. Lin, N. N. Wang, J. Q. Wang, W. Liu, K. Sun, Y. Q. Fu, Z. G. Wang, Sens. Actuators B 2016, 235, 222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xosl2isbg%3D&md5=5e7545e7dc8e5df32b6f5d9b822c7844CAS |

[15]  Y. Li, H. T. Ban, M. J. Yang, Sens. Actuators B 2016, 224, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslOrsLrJ&md5=c306c160750287c3b0cbaf8da845eb63CAS |

[16]  X. F. Chu, T. Hu, F. Gao, Y. P. Dong, W. Q. Sun, L. S. Bai, Mater. Sci. Eng. B 2015, 193, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSnsr7L&md5=ee5c2a397b969a8eb24ccca19a496502CAS |

[17]  K. Khojier, H. Savaloni, N. Habashi, M. H. Sadi, Mater. Sci. Semicond. Process. 2016, 41, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVagt7bF&md5=3ac92989205d19879962c2837f1733cbCAS |

[18]  Y. H. Gui, F. H. Dong, Y. H. Zhang, Y. Zhang, J. F. Tian, Mater. Sci. Semicond. Process. 2013, 16, 1531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCjtbbJ&md5=54858b9e68e3d5b770edf50e3dfc2f85CAS |

[19]  N. M. Vuong, T. N. Trung, T. T. Hien, N. D. Chinh, N. D. Quang, D. Lee, D. Kim, T. L. Phan, D. Kim, Mater. Trans. 2015, 56, 1354.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. H. Park, H. S. Ko, S. Y. Kim, C. M. Lee, Ceram. Int. 2014, 40, 8305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsF2qtL8%3D&md5=1f774ba6af26b777a4a913fa81e75781CAS |

[21]  T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, E. Filippo, Sens. Actuators B 2008, 133, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOru74%3D&md5=0e0eb9091aa4b4108d2cfda03942d9eeCAS |

[22]  Y. Yamaguchi, S. Imamura, K. Nishio, K. Fujimoto, J. Ceram. Soc. Jpn. 2016, 124, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsV2gt73J&md5=7c09f08eccf082b7562be11cbc75bc7eCAS |

[23]  S. Khademolhoseini, S. A. Zarkar, J. Mater. Sci. Mater. Electron. 2016, 27, 9605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosFeht70%3D&md5=da16e77004449c259978c7d309e81adcCAS |

[24]  B. Sun, H. W. Li, L. J. Wei, P. Chen, CrystEngComm 2014, 16, 9891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOhtLrN&md5=58fd1d7891e4b8410a41c535b3f81e8bCAS |

[25]  G. J. He, J. M. Li, W. Y. Li, B. Li, N. Noor, K. B. Xu, J. Q. Hu, I. P. Parkin, J. Mater. Chem. A 2015, 3, 14272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsF2gtr4%3D&md5=53fdb03708a63200906363e84b15d23cCAS |

[26]  L. Dai, H. Z. Zhou, G. X. Yang, Y. H. Li, J. Zhu, L. Wang, J. Alloys Compd. 2016, 663, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitV2ktLbL&md5=5931dfdfc222aa18dc3f7dc7bb9ff434CAS |

[27]  S. S. Joshi, C. D. Lokhande, S. H. Han, Sens. Actuators B 2007, 123, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs12jurc%3D&md5=d91d20f39646afd06fc7b78afb3e401eCAS |

[28]  W. T. Koo, S. J. Choi, S. J. Kim, J. S. Jang, H. L. Tuller, I. D. Kim, J. Am. Chem. Soc. 2016, 138, 13431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFensrrP&md5=61c3590fc3638eed611e2488a0eb4352CAS |

[29]  X. T. Xing, Y. L. Gui, G. J. Zhang, C. Y. Song, Electrochim. Acta 2015, 157, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1Shug%3D%3D&md5=dc3bd72058f797675d8b56f18331f58fCAS |

[30]  S. J. Naik, A. V. Salker, Solid State Sci. 2010, 12, 2065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCrtr%2FN&md5=84f22b21ca9a396baf8f80ef9af31e71CAS |

[31]  S. Shanmugapriya, S. Surendran, V. D. Nithya, P. Saravanan, R. Kalai Selvan, Mater. Sci. Eng. B 2016, 214, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyms7vP&md5=f0fe15559cd12ada3b9571e0eb980f15CAS |

[32]  X. W. Xu, J. F. Shen, N. Li, M. X. Ye, Electrochim. Acta 2014, 150, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGhs7fM&md5=bef7d28aaa79c187d66d300b5036a512CAS |

[33]  X. Y. Xu, J. P. Gao, G. B. Huang, H. X. Qiu, Z. Y. Wang, J. Z. Wu, Z. Pan, F. B. Xing, Electrochim. Acta 2015, 174, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOlsLvK&md5=b2839bd0fb8a15537ef6bb68aec39bc2CAS |

[34]  L. L. Wang, A. U. Rehman, H. Y. Wu, B. F. Wu, L. Li, K. Y. Shi, RSC Adv. 2016, 6, 69999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1WrsbvN&md5=d6567a0f304701397ba66b48603e1a0cCAS |

[35]  R. D. Kumar, S. Karuppuchamy, J. Alloys Compd. 2016, 674, 384.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. Zhang, Z. L. Zhu, H. N. Chen, Y. Bai, S. Xiao, X. L. Zheng, Q. Z. Xue, S. H. Yang, Nanoscale 2015, 7, 2933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFegt73L&md5=67c59e26cd4d2f1edf05fafe8e05fb28CAS |

[37]  Y. L. Wang, J. Liu, X. B. Cui, Y. Gao, J. Ma, Y. F. Sun, P. Sun, F. M. Liu, X. S. Liang, T. Zhang, G. Y. Lu, Sens. Actuators B 2017, 238, 473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1egsLnF&md5=0ee4c9fb524bdeca4a87aedbbe5d7ed7CAS |

[38]  C. B. Yu, Y. Wu, X. L. Liu, F. Fu, Y. Gong, Y. J. Rao, Y. F. Chen, Sens. Actuators B 2017, 244, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjvFCguw%3D%3D&md5=aea0a68f3e69a1fc300ebacab50a67e3CAS |

[39]  S. Rajagopal, V. L. Bekenev, D. Nataraj, D. Mangalaraj, O. Y. Khyzhunb, J. Alloys Compd. 2010, 496, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVOisL0%3D&md5=fcd581cfad4c499643de49210d6eb2f4CAS |

[40]  S. Dey, R. A. Ricciardo, H. L. Cuthbert, P. M. Woodward, Inorg. Chem. 2014, 53, 4394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXms1Wgu78%3D&md5=6e466e6a42f4b11fd2d3d5dc4e389384CAS |

[41]  S. T. Tan, C. H. Tan, W. Y. Chong, C. C. Yap, A. A. Umar, R. T. Ginting, H. B. Lee, K. S. Lim, M. Yahaya, M. M. Salleh, Sens. Actuators B 2016, 227, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ejsg%3D%3D&md5=87b109155a0da00047e43002fd6470b6CAS |

[42]  S. Xu, K. Kan, Y. Yang, C. Jiang, J. Gao, L. Q. Jing, P. K. Shen, L. Li, K. Y. Shi, J. Alloys Compd. 2015, 618, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVyntbnI&md5=4cb52e71603973330f82bba3897f1f1dCAS |

[43]  C. L. Hsu, Y. D. Gao, Y. S. Chen, T. J. Hsueh, Appl. Surf. Sci. 2014, 6, 4277.
         | 1:CAS:528:DC%2BC2cXjsVSntL0%3D&md5=9b4d99af99ff5c71489aa19a0a2850cbCAS |

[44]  H. S. Kim, S. An, C. H. Jin, C. M. Lee, Curr. Appl. Phys. 2012, 12, 1125.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  W. L. Ong, C. Zhang, G. W. Ho, Nanoscale 2011, 3, 4206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWitr3P&md5=0bf2bb39c860c34d67c93bcac62974ccCAS |

[46]  T. F. Jiang, T. F. Xie, W. S. Yang, H. M. Fan, D. J. Wang, J. Colloid Interface Sci. 2013, 405, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFSnsr0%3D&md5=47da7c4812fa4e5ad9066c7eee5dfe91CAS |