Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Rational Design of Azo-Azomethine Receptors for Sensing of Inorganic Fluoride: Construction of Molecular Logic Gates and DFT Study

Hamid Khanmohammadi A B , Khatereh Rezaeian A and Nafiseh Shabani A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.

B Corresponding author. Email: h-khanmohammadi@araku.ac.ir

Australian Journal of Chemistry 70(12) 1254-1262 https://doi.org/10.1071/CH17310
Submitted: 7 June 2017  Accepted: 29 June 2017   Published: 10 August 2017

Abstract

New azo-azomethine receptors, HLn (n = 1–3), have been synthesised via condensation reaction of 5-(4-X-phenyl)-azo-salicylaldehyde (X = NO2, Cl and CH3) with (4-nitrobenzylidene)hydrazine. The receptor with a p-NO2 substituent on the aromatic ring of the azo moiety (HL1) has excellent sensitivity and selectivity towards basic anions with proper discrimination between F and AcO or H2PO4 in DMSO–water (4 : 1). A Job’s plot displays a 1 : 1 stoichiometry between HL1 and F alone with a detection limit of 0.737 μM for fluoride ions. The solvatochromic behaviour of HL1 was probed by studying its UV-vis spectra in four pure organic solvents of different polarities and a meaningful correlation was observed. Furthermore, HL1 was used for detection of inorganic fluoride in toothpaste. The systematic density functional theory (DFT) and time dependent-DFT calculations have been carried out to investigate the mechanism of colourimetric sensing of fluoride ion by HL1 in the gas phase and in solution. Moreover, by using F and H+ as chemical inputs, and the absorbance as output, a INHIBIT logic gate was constructed, which exhibits ‘Write–Read–Erase–Read’ ability without obvious degradation in its optical output.


References

[1]  P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis, I. L. Kirby, Chem. Soc. Rev. 2014, 43, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGktLzJ&md5=b81a2d44f17ae50efd302b1392435168CAS |

[2]  H. J. Schneider, A. Yatsimirsky, Chem. Soc. Rev. 2008, 37, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgsQ%3D%3D&md5=ce8261504c8e613816463722fefa1396CAS |

[3]  C. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntbo%3D&md5=a9e69fa66bd22ed89e49494ef1e2c0d4CAS |

[4]  P. A. Gale, C. Caltagirone, Chem. Soc. Rev. 2015, 44, 4212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKrsLfM&md5=d3f88bec515b13494428a198e7a736faCAS |

[5]  N. Busschaert, C. Caltagirone, W. V. Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVSnsrg%3D&md5=8693d9e27e9b3b8edd4cdcbe29ff8983CAS |

[6]  X. F. Shang, Spectrochim. Acta A 2009, 72, 1117.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Vishwakarma, A. Kumar, A. Pandey, K. K. Upadhyay, Spectrochim. Acta A 2017, 170, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Slt7%2FP&md5=96e6d84bd93494ac3589bff92f8ad5e4CAS |

[8]  T. B. Wei, H. Li, Q. Q. Wang, G. T. Yan, Y. R. Zhu, T. T. Lu, B. B. Shi, Q. Lin, Y. M. Zhang, Supramol. Chem. 2016, 28, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVKqsLjF&md5=819137b7c2c9ec99ea0026d871fd801eCAS |

[9]  D. Browne, H. Whelton, D. O’Mullane, J. Dent. 2005, 33, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslCisbc%3D&md5=01d722014c5a7f80ec46e11b8217d2b1CAS |

[10]  Y. Ding, Y. Tang, W. Zhu, Y. Xie, Chem. Soc. Rev. 2015, 44, 1101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Omt70%3D&md5=bdb1a2947f986256dd210c1aa0b3a1d5CAS |

[11]  O. Barbier, L. Arreola-Mendoza, L.-M. Del Razo, Chem.-Biol. Interact. 2010, 188, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyit7jO&md5=11a4566477437c329796a7d765605c0dCAS |

[12]  P. T. C. Harrison, J. Fluor. Chem. 2005, 126, 1448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CitrrF&md5=ac968d4d95399f51d947f4e2fa3b04acCAS |

[13]  See p. 38 in: World Health Organization (WHO), WHO Guidelines for Drinking-Water Quality (4th edn) 2017 (WHO: Geneva).

[14]  M. Cametti, K. Rissanen, Chem. Commun. 2009, 2809.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2jsr0%3D&md5=419ae1cc7b760205c6e7d1b565833da3CAS |

[15]  S. Erdemir, O. Kocyigit, O. Alici, S. Malkondu, Tetrahedron Lett. 2013, 54, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyhs7bK&md5=bcd16d3659c6b40aa1f735aed9747127CAS |

[16]  A. C. Gonçalves, N. C. Sato, H. M. Santos, J. L. Capelo, C. Lodeiro, A. A. dos Santos, Dyes Pigments 2016, 135, 177.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  V. Amendola, M. Bonizzoni, B. Esteban-Gomez, L. Fabbrizzi, M. Licchelli, F. Sancenon, A. Taglietti, Coord. Chem. Rev. 2006, 250, 1451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlKlsLc%3D&md5=a8afc14a7a53042327d45d0e2ad3b5ecCAS |

[18]  T. Nishimura, S.-Y. Xu, Y.-B. Jiang, J. S. Fossey, K. Sakurai, S. D. Bull, T. D. James, Chem. Commun. 2013, 49, 478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChs7vF&md5=4c0b8afeecdd35c7e66c2dd9891cce7eCAS |

[19]  L. Fabbrizzi, Chem. Soc. Rev. 2013, 42, 1681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2rsr4%3D&md5=3295a9f0fcd9e310e2dbe9ac7af25c76CAS |

[20]  H. Khanmohammadi, K. Rezaeian, RSC Adv. 2014, 4, 1032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGms7vM&md5=d1878812f1db30f936649515d55e3152CAS |

[21]  A. K. Mahapatra, S. K. Manna, P. Sahoo, Talanta 2011, 85, 2673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KmsL7E&md5=234be3513149da3be9c0381d4127b938CAS |

[22]  A. Kuwar, R. Patil, A. Singh, S. K. Sahoo, J. Marek, N. Singh, J. Mater. Chem. C 2015, 3, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGhsbvE&md5=6b466848a57302365b7f7ddcec54bf57CAS |

[23]  D. Margulies, C. E. Felder, G. Melman, A. Shanzer, J. Am. Chem. Soc. 2007, 129, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlantr3I&md5=1cf15943496605aae069c15c48722615CAS |

[24]  D. C. Magri, G. J. Brown, G. D. McClean, A. P. de Silva, J. Am. Chem. Soc. 2006, 128, 4950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVelt74%3D&md5=31bd534c658973e3c64ef1598e755d07CAS |

[25]  S. Pramanik, V. Bhalla, M. Kumar, ACS Appl. Mater. Interfaces 2014, 6, 5930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2lt7Y%3D&md5=be3539b447b8c6d57e19d65562c988b0CAS |

[26]  N. Kaur, P. Alreja, Tetrahedron Lett. 2015, 56, 182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWhsbfF&md5=b16327bc43d1e7d3af0d42a13f267e50CAS |

[27]  P. Ghosh, P. Banerjee, Chem. Phys. 2016, 478, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xnt12qtrk%3D&md5=7e0a694586dc9b9c4b3b4fcb16129c42CAS |

[28]  S. Sreejith, A. Ajayaghosh, Indian J. Chem. 2012, 51, 47.

[29]  S. Wang, G. Men, L. Zhao, Q. Hou, S. Jiang, Sens. Actuators B 2010, 145, 826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOhs7s%3D&md5=6520099201c9146e6ab9584cd471e69fCAS |

[30]  H. Khanmohammadi, K. Rezaeian, Spectrochim. Acta Part A 2012, 97, 652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGjurrK&md5=8cb31d29a4926e34f8ae39a0155b0f66CAS |

[31]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01 2009 (Gaussian, Inc.: Wallingford, CT).

[32]  I. I. R. Dennington, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, R. Gilliland, GaussView, Version 3.09 2003 (Semichem, Inc.: Shawnee Mission, KS).

[33]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=a4fd99b0357ab941e5799cbcb338fdb2CAS |

[34]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |

[35]  C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (2nd edn) 2004 (Wiley: Chichester).

[36]  D. Pawlica, M. Marszałek, G. Mynarczuk, L. Sieroń, J. Eilmes, New J. Chem. 2004, 28, 1615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGqurrE&md5=d97e1c552b0909d996d1393bbd647808CAS |

[37]  H. Khanmohammadi, M. Erfantalab, Spectrochim. Acta A 2012, 86, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cgu77N&md5=a2b97884a4b31ad047ccfcbd11ab1e45CAS |

[38]  G. Socrates, in Infrared and Raman Characteristic Group Frequencies (3rd edn) (Eds M. Brustolon, E. Giamello) 2001, pp. 295–320 (John Wiley & Sons Ltd: Chichester, NY) .

[39]  N. M. Rageh, Spectrochim. Acta A 2004, 60, 103.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. M. Khedr, M. Gaber, R. M. Issa, H. Erten, Dyes Pigments 2005, 67, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSmsLo%3D&md5=4619e2faec0132b8d0e22bed892bc8dfCAS |

[41]  I. I. Abbas, H. H. Hammud, H. Shamsaldeen, Eur. J. Chem. 2012, 3, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOrt77N&md5=5cf85e1c8ab196521ea90dfe42426e45CAS |

[42]  R. S. Bhosale, M. M. A. Kelsonc, S. V. Bhosale, S. K. Bhargava, S. V. Bhosale, Mater. Today: Proceedings 2016, 3, 1883.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXktlCisA%3D%3D&md5=5b178c5368e2c9364d2f5c0b8a37672eCAS |

[44]  M. Boiocchi, L. Del Boca, D. E. Gómez, L. Fabbrizzi, M. Licchelli, E. Monzani, J. Am. Chem. Soc. 2004, 126, 16507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagtLvN&md5=7bc0932b9a990a1bdfd4c1dd201dcfe6CAS |

[45]  See pp. 550–552 in: C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry (4th edn) 2011 (Wiley-VCH: Weinheim).

[46]  P. D. Ross, S. Subramanian, Biochemistry 1981, 20, 3096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktF2qsb0%3D&md5=84478e64d6f3cb0e85cf1a679bdc7d05CAS |