Recognition of a Flavin Analogue by Novel Bile Acid-Based Receptors: Effects of Hydrogen Bonding and Aromatic π-Stacking Interactions
Pradeep Kumar Muwal A , Rajesh Kumar Chhatra A , Shubhajit Das A and Pramod S. Pandey A BA Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
B Corresponding author. Email: pramod@chemistry.iitd.ac.in
Australian Journal of Chemistry 70(12) 1263-1268 https://doi.org/10.1071/CH17220
Submitted: 22 April 2017 Accepted: 29 June 2017 Published: 28 July 2017
Abstract
Molecular recognition properties are reported for novel bile acid-based receptors that incorporate 2,6-diaminopyridine as a recognition unit. Apart from hydrogen-bonding interactions, the bile acid receptors exhibit significant aromatic π-stacking interactions with the aromatic fused ring of the flavin derivative. These studies provide rationalisation for the differences in binding behaviour of bile acid receptors having differing aromatic arm lengths towards a flavin analogue.
References
[1] (a) F. Muller, in Chemistry and Biochemistry of Flavoenzymes (Ed. F. Muller) 1991, Vol. 1, 1–71 (CRC: Boca Raton, FL).(b) P. F. Fitzpatrick, Acc. Chem. Res. 2001, 34, 299.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) V. Massey, P. Hemmerich, Biochem. Soc. Trans. 1980, 8, 246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1eiu7w%3D&md5=5d0de76ac3adee453869eb44fd96d33eCAS |
(b) V. Massey, FASEB J. 1995, 9, 473.
[3] A. Niemz, V. Rotello, Acc. Chem. Res. 1999, 32, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt12jtLc%3D&md5=fd8230ba829dd35157d5d0742e856fddCAS |
[4] (a) K. Nishimoto, Y. Watnabe, K. Yagi, Biochim. Biophys. Acta 1978, 526, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlslGhtr4%3D&md5=7148e38806cc6d51af3079d645d64eddCAS |
(b) K. Nishimoto, H. Fukunaga, K. J. Yagi, J. Biochem. 1986, 100, 1647.
| Crossref | GoogleScholarGoogle Scholar |
[5] K. Nishimoto, H. Higashimura, T. Asada, Theor. Chem. Acc. 1999, 102, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Kjsr4%3D&md5=6fc10a48a41a63464814b6911a343072CAS |
[6] (a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVShur8%3D&md5=fe12318409cce2c8e3594df7d49179b5CAS |
(b) B. J. Stockman, T. E. Richardson, R. P. Swenson, Biochemistry 1994, 33, 15298.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Nandwana, I. Samuel, G. Cooke, V. M. Rotello, Acc. Chem. Res. 2013, 46, 1000.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) E. C. Breinlinger, V. M. Rotello, J. Am. Chem. Soc. 1997, 119, 1165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslansb0%3D&md5=655232402c60c31df1e4bfc5349855b4CAS |
(b) A. J. Goodman, E. C. Breinlinger, C. M. Mclntosh, L. N. Grimaldi, V. M. Rotello, Org. Lett. 2001, 3, 1531.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Gray, A. J. Goodman, J. B. Carrol, K. Bardon, M. Markey, G. Cooke, V. M. Rotello, Org. Lett. 2004, 6, 385.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. S. F. Boyd, J. B. Carroll, G. Cooke, J. F. Garety, B. J. Jordan, S. Mabruk, G. Rosair, V. M. Rotello, Chem. Commun. 2005, 2468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVSjsbw%3D&md5=2e69dd3e025bd175c12d6beb093d50bbCAS |
[9] S. T. Caldwell, G. Cooke, S. G. Hewage, S. Mabruk, G. Rabani, V. M. Rotello, B. O. Smith, C. Subramani, P. Woisel, Chem. Commun. 2008, 4126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFektbvI&md5=4fb3c2fa9b4cca8fbd5ebba1d93792c3CAS |
[10] G. Cooke, J. F. Garety, B. Jordan, N. Kryvokhyzha, A. Parkin, G. Rabani, V. M. Rotello, Org. Lett. 2006, 8, 2297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyisbw%3D&md5=429b9b6ff29f0b56825812f1f28a9cf0CAS |
[11] S. T. Caldwell, G. Cooke, B. Fitzpatrick, D. L. Long, G. Rabani, V. M. Rotello, Chem. Commun. 2008, 5912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqtbrM&md5=525b257aaa4a07f6f09fc71541fdc0e3CAS |
[12] N. A. McDonald, C. Subramani, S. T. Caldwell, N. Y. Zainalabdeen, G. Cooke, V. M. Rotello, Tetrahedron Lett. 2011, 52, 2107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1yksLY%3D&md5=a6091d527ceacc9a353f2ad7224fbdb7CAS |
[13] P. Chattopadhyay, P. S. Pandey, Tetrahedron 2006, 62, 8620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVSmur4%3D&md5=39ed7d4bdbd1a95166cf68c447f5f22fCAS |
[14] P. Chattopadhyay, R. Nagpal, P. S. Pandey, Aust. J. Chem. 2008, 61, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSqs74%3D&md5=0890e05784d3972ca5ea4d03c8e21061CAS |
[15] P. Chattopadhyay, R. Rai, P. S. Pandey, Synth. Commun. 2006, 36, 1857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWitLY%3D&md5=7623c8050c48c0297cb98dbdc800b400CAS |
[16] A. J. Ayling, M. N. Pérez-Payán, A. P. Davis, J. Am. Chem. Soc. 2001, 123, 12716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlKrtrg%3D&md5=afa42265a843e39d779df85f1df02532CAS |
[17] T. N. Lambert, J. M. Boon, B. D. Smith, M. N. Pérez-Payán, A. P. Davis, J. Am. Chem. Soc. 2002, 124, 5276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFWitrg%3D&md5=3eb2609bcc36988a583f51b3990d247eCAS |
[18] A. V. Koulov, T. N. Lambert, R. Shukla, M. Jain, J. M. Boon, B. D. Smith, H. Y. Li, D. N. Sheppard, J. B. Joos, J. P. Clare, A. P. Davis, Angew. Chem. Int. Ed. 2003, 42, 4931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Oitbc%3D&md5=415fdb8deba87cc333fb16d27ab8f47cCAS |